• Title/Summary/Keyword: Hydrothermal Stability

Search Result 102, Processing Time 0.026 seconds

Synthetic of Magnetic Fine Powder for Oil Suspending Magnetic Fluid (자성 유체용 미분 자성 분체의 제조)

  • 이경희;이병하;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.146-152
    • /
    • 1991
  • Ultra fine and homogeneous (Ni0.4Zn0.6)Fe2O4 ferrite powders were prepared by direct-wet, Hydrothermal and coprecipitation methods. In case that specific surface areas of Ni-Zn ferrite powders were over 220㎡/g, 100㎡/g, 30㎡/g individually direct-wet, hydrothermal and coprecipitation methods. The Ni-Zn ferrite magnetic fluids of which Solvents were benzene or kerosene was prepared by making cation surfactant adsorbed on the surface of the (Ni0.4Zn0.6)Fe2O4. The results that measured dispersion and viscosity by making cation surfactant adsorbed were as follows. 1. The adsorption amount of Oleric acid be proportioned the specific surface area of powders. 2. The maximum amount of Oleric acid was 36wt% of dried powders which has 220㎡/g of specific surface area. 3. The stability of fluid by direct-wet synthesis emthod in benzene or kerosene solvent excellent.

  • PDF

The Thermal conductivity analysis and performance evaluation on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체의 열전도분석 및 구조안전성 검토)

  • Lee, Seung-Ha;Park, Jeong-Sik;Lee, Seok-Jin;Kim, Bong-Chan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. For the feasibility study on geothermal snow melting system, analysis of the ground melting point when operating system, life evaluation of pavements and safety evaluation of pipes are performed.

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Dispersion stability of polyelectrolyte-wrapped carbon black particles in a highly fluorinated solvent

  • Yoon, Hyeon Ji;Choe, Jun Ho;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.25-30
    • /
    • 2018
  • The dielectric medium used in electrophoretic displays (EPDs) is required to be an environmentally friendly solvent with high density, low viscosity, and a large electric constant. Hydrofluoroether, a highly fluorinated solvent with eco-friendly characteristics, is regarded as a viable alternative medium for EPDs, owing to the similarity of its physical properties to those of the conventional EPD medium. Surface modification of particles is required, however, in order for it to disperse in the charged solvent. Also, positive/negative charges should be present on the particle surface to enable electrophoretic behavior. In this study, carbon black particles wrapped with positively charged nitrogen (N-CBs) were fabricated by a simple hydrothermal process using a poly(diallyldimethylammonium chloride) solution as a black coloring agent for the EPD. The dispersion behavior of N-CBs was investigated in various solvents.

Preparation and Characterization of Muscovite Mica/UV Coating Materials for Steel

  • Cheong, In-Woo;Kim, Hyeon-Seok;Hwang, Dong-Seop;Yoo, Hye-Jin;Kim, Jin-Tae;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.265-269
    • /
    • 2010
  • This paper describes the exfoliation and surface modification of muscovite mica for UV coating formulation. For the exfoliation of the mica, hydrothermal process was used in the presence of lithium nitrate ($LiNO_3$). After the cation exchange with $Li^+$ ions, the surface of the mica was modified with several amphiphilic substances to increase compatibility and storage stability in UV coating formulation. Such a hydrophobic surface modification affected colloidal stability as well as dispersibility of the exfoliated mica in UV coating solution. Anticorrosive property of mica/UV coated steel plates was tested by salt spray test (SST) and compared with sodium montmorillonite ($Na^+$-MMT)/UV coated steel plates.

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo;In, Su-Il;Kim, Jong-Duk
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.

Preparation and Chrominance of Metal Oxide Coated Titania/Mica Pearlescent Pigment (금속산화물이 코팅된 마이카 티타니아 진주광택 안료의 제조 및 색차변화)

  • Lee, Kwan-Sik;Kang, Kuk-Hyoun;Lee, Jin-Hee;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.233-243
    • /
    • 2013
  • The inorganic pearlescent pigment have high physical and chemical stability, thus it is used in a variety field, which has better light stability, solvent resistance and thermostability. In this paper, we were synthesized the pearlescent pigment for cosmetics which was coated cobalt chloride for base of blue color metal oxide on mica titania substrate using hydrothermal synthesis method. To complement the color of the pigment by cobalt, pearl pigment were coated by different metal salt and cobalt ratio, to implement a variety of color value, depending on the kind of metal salts were synthesized. Synthesized pearlescent pigments appear various color as kind of added metal salt precursor and molar ration of cobalt and other metals. We controlled coating and color by composition of metal salt and type of metal salts, and that confirm the pigment characteristics of color changes through the analysis of color difference meter. Synthesized pigment was characterized by SPM, SEM, XRD, and EDS.

Synthesis and Characterization of Amorphous Calcium Phosphate Nanoparticles (비정질 칼슘 포스페이트 나노 입자의 합성과 특성)

  • Han, Ji-Hoon;Chung, Sungwook
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.740-745
    • /
    • 2018
  • The synthesis and characterization of amorphous calcium phosphate (ACP) nanoparticles were reported in this work. We show that relatively monodisperse ACP nanoparticles with a size of sub-100 nm can be prepared by a hydrothermal reaction of calcium chloride ($CaCl_2$) and disodium adenosine triphosphate ($Na_2ATP$) in the presence of sodium phytate as an additive. Their compositions and structures were confirmed using a series of material characterization techniques. Our results exhibit that ACP nanoparticles synthesized using sodium phytate enhanced the stability of maintaining their amorphous nature and prevented from a conversion to crystalline hydroxyapatite (HAP). ACP nanoparticles with the improved stability have potential uses in biomaterial applications in regenerative medicine.

Mineralogy, Distribution and Origin of Some Pyrophyllite-Dickite-Alunite Deposits in the Haenam Area, Southwest Korea (전남 해남지역 납석, 명반석 및 도석광상의 분포, 광물조성 및 형성기구)

  • Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 1992
  • Mineral assemblages, mineral chemistries and stable isotope compositions of altered rocks of the Ogmae, Seongsan, Haenam and Gusi mines near the Haenam volcanic field in the southwestern part of the Korea peninsula were studied. Characteristic hydrothermal alteration zones in these deposits occurring in the Cretaceous volcanics and volcanogenic sediments, acidic tuff, and rhyolite, were outlined. Genetic environment with particular reference to the spatial and temporal relationships for these deposits were considered. The alteration zones defined by a mineral assemblage in the Ogmae and Seongsan deposits can be classified as alunite, pyrophyllite, kaolinite or dickite, quartz, illite or illite/smectite. Alunite was not developed in the Gusi and Haenam deposits. Boundaries between the adjacent zones are always gradational except for vein-type alunite. Alteration zones are superimposed upon each other in some localities. These deposits formed $71.8{\pm}2.8{\sim}76.6{\pm}2.9$ Ma ago, which is the almost same age of later volcanic rocks $79.4{\pm}1.7{\sim}82.8{\pm}1.2$ Ma, the Haenam Group, corresponding to Campanian. It indicates that hydrothermal alteration of these deposits appeared to be related to felsic volcanism in the area. Consideration of the stability between kaolinite, alunite, pyrite and pyrophyllite, and the geothermometry based on the mineral chemistry of illite and chlorite suggests that the maximum formation temperature for alunite and pyrophyllite can be estimated at about $250^{\circ}C$ and $240{\sim}290^{\circ}C$, respectively. It also suggests that these deposits were formed by acidic sulfate solution with high aqueous silica and potassium activity in a shallow depth environment. Compositional variation of alunite also suggests that the physico-chemical conditions fluctulated considerably during alteration processes, indicating shallow depth environment. The Haenam deposit was formed at a relatively greater depth than the others. The sulfur isotope composition of alunite and pyrite indicates that sulfur probably had a magmatic source, and the oxygen isotope composition for kaolinite indicates that the magmatic hydrothermal solution was diluted by circulating meteoric water.

  • PDF

Chemical Characterization of Oscillatory Zoned Tourmaline from Diaspore Nodule, an Aluminum-rich Clay Deposit, Milyang, South Korea (밀양 고알루미나 점토광상 다이아스포아 단괴내의 진동누대 전기석의 화학적 특징)

  • Choo, Chang-Oh;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.227-236
    • /
    • 2005
  • Hydrothermal tourmaline occurs as aggregates or dissemination in the diaspore nodule from an aluminum-rich clay deposit, Milyang, southeastern Korea. Most crystals of tourmaline show complex textures that are finely zoned. The fine-scale chemical zonation of hydrothermal tourmaline reflects the fluctuation conditions that would be expected from fluid mixing in open systems. Oscillatory chemical zoning in tourmaline formed and showed similar patterns, regardless of its crystallographic directions. Mg was enriched in the early stage of crystal growth while Fe was enriched in the later stage, with fluctuations of the ratio of Fe to Mg. Chemical analysis, BSE images, and X-ray compositional maps confirm that the oscillatory Boning in tourmaline is exclusively controlled by the variations of Fe and Mg contents, but the contribution of boron to the zonation is insignificant. The fact that tourmaline altered to diaspore and dickite indicates that tourmaline was unstable with respect to these aluminous minerals as the B, Fe, and Mg activities decreased. Therefore, the aluminum activity may control the stability of tourmaline in the hydrothermal system.