Browse > Article
http://dx.doi.org/10.14478/ace.2018.1089

Synthesis and Characterization of Amorphous Calcium Phosphate Nanoparticles  

Han, Ji-Hoon (Department of Polymer Science and Chemical Engineering, Pusan National University)
Chung, Sungwook (School of Chemical, Biomolecular, and Environmental Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.6, 2018 , pp. 740-745 More about this Journal
Abstract
The synthesis and characterization of amorphous calcium phosphate (ACP) nanoparticles were reported in this work. We show that relatively monodisperse ACP nanoparticles with a size of sub-100 nm can be prepared by a hydrothermal reaction of calcium chloride ($CaCl_2$) and disodium adenosine triphosphate ($Na_2ATP$) in the presence of sodium phytate as an additive. Their compositions and structures were confirmed using a series of material characterization techniques. Our results exhibit that ACP nanoparticles synthesized using sodium phytate enhanced the stability of maintaining their amorphous nature and prevented from a conversion to crystalline hydroxyapatite (HAP). ACP nanoparticles with the improved stability have potential uses in biomaterial applications in regenerative medicine.
Keywords
amorphous calcium phosphate; nanoparticles; hydroxyapatite; hydrothermal reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. F. Zhou et al., Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation, Biomaterials, 121, 1-14 (2017).   DOI
2 Z. He, C. W. Honeycutt, T. Zhang, and P. M. Bertsch, Preparation and FT-IR characterization of metal phytate compounds, J. Environ. Qual., 35, 1319-1328 (2006).   DOI
3 C. Qi, J. Lin, L. H. Fu, and P. Huang, Calcium-based biomaterials for diagnosis, treatment, and theranostics, Chem. Soc. Rev., 47, 357-403 (2018).   DOI
4 H. Zhou and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering, Acta Biomater., 7, 2769-2781 (2011).   DOI
5 C. Combes, S. Cazalbou, and C. Rey, Apatite biominerals, Minerals, 6, 1-25 (2016).
6 W. J. Jin, S. Q. Jiang, H. H. Pan, and R. K. Tang, Amorphous phase mediated crystallization: Fundamentals of biomineralization, Crystals, 8, 1-24 (2018).
7 H. R. Wang et al., Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine, Sci. Rep., 7, 40701-40713 (2017).   DOI
8 E. Beniash, R. A. Metzler, R. S. K. Lam, and P. U. P. A. Gilbert, Transient amorphous calcium phosphate in forming enamel, J. Struct. Biol., 166, 133-143 (2009).   DOI
9 A. Dey et al., The role of prenucleation clusters in surface-induced calcium phosphate crystallization, Nat. Mater., 9, 1010-1014 (2010).   DOI
10 M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, and M. Ogawa, Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials, 17, 1771-1777 (1996).   DOI
11 A. L. Boskey, Amorphous calcium phosphate: The contention of bone, J. Dent. Res., 76, 1433-1436 (1997).   DOI
12 S. Kim, H. S. Ryu, H. Shin, H. S. Jung, and K. S. Hong, In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions, Mater. Chem. Phys., 91, 500-506 (2005).   DOI
13 C. G. Wang et al., Crystallization at Multiple Sites inside Particles of Amorphous Calcium Phosphate, Cryst. Growth Des., 9, 2620-2626 (2009).   DOI
14 A. L. Boskey and A. S. Posner, Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution- mediated, solid-solid conversion, J. Phys. Chem., 77, 2313-2317 (1973).   DOI
15 Z. Zyman, D. Rokhmistrov, and V. Glushko, Structural changes in precipitates and cell model for the conversion of amorphous calcium phosphate to hydroxyapatite during the initial stage of precipitation, J. Cryst. Growth, 353, 5-11 (2012).   DOI
16 G. H. Nancollas and B. Tomazic, Growth of calcium-phosphate on hydroxyapatite crystals - Effect of supersaturation and ionic medium, J. Phys. Chem., 78, 2218-2225 (1974).   DOI
17 H. C. Margolis, S. Y. Kwak, and H. Yamazaki, Role of mineralization inhibitors in the regulation of hard tissue biomineralization: Relevance to initial enamel formation and maturation, Front. Physiol., 5:339 (2014).
18 S. Q. Jiang, W. Jin, Y.-N. Wang, H. Pan, Z. Sun, and R. Tang, Effect of the aggregation state of amorphous calcium phosphate on hydroxyapatite nucleation kinetics, RSC Adv., 7, 25497-25503 (2017).   DOI
19 H. Furedi-Milhofer, L. Brecevic, and B. Purgaric, Crystal growth and phase transformation in the precipitation of calcium phosphates, Faraday Discuss. Chem. Soc., 61, 184-193 (1976).   DOI
20 S. Q. Jiang, H. H. Pan, Y. Chen, X. R. Xu, and R. K. Tang, Amorphous calcium phosphate phase-mediated crystal nucleation kinetics and pathway, Faraday Discuss., 179, 451-461 (2015).   DOI
21 R. Wuthier and E. Eanes, Effect of phospholipids on the transformation of amorphous calcium phosphate to hydroxyapatite in vitro, Calcif. Tissue Res., 19, 197-210 (1975).   DOI
22 R. Z. LeGeros et al., Amorphous calcium phosphates (ACP): Formation and stability, Key Eng. Mater., 284, 7-10 (2005).
23 P. Bar-Yosef Ofir, R. Govrin-Lippman, N. Garti, and H. Füredi-Milhofer, The influence of polyelectrolytes on the formation and phase transformation of amorphous calcium phosphate, Cryst. Growth Des., 4, 177-183 (2004).   DOI
24 N. C. Blumenthal, F. Betts, and A. S. Posner, Stabilization of amorphous calcium-phosphate by Mg and ATP, Calcif. Tissue Res., 23, 245-250 (1977).   DOI
25 Y. Chen, W. J. Gu, H. H. Pan, S. Q. Jiang, and R. K. Tang, Stabilizing amorphous calcium phosphate phase by citrate adsorption, Cryst. Eng. Comm., 16, 1864-1867 (2014).   DOI
26 Z. Amjad, Inhibition of the amorphous calcium phosphate phase transformation reaction by polymeric and non-polymeric inhibitors, Phosphorus Res. Bull., 7, 45-54 (1997).   DOI
27 C. Qi, Y.-J. Zhu, X.-Y. Zhao, B.-Q. Lu, Q.-L. Tang, J. Zhao, and F. Chen, Highly stable amorphous calcium phosphate porous nanospheres: Microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery, Chemistry, 19, 981-987 (2013).   DOI
28 Y. Tanizawa and T. Suzuki, Effects of silicate ions on the formation and transformation of calcium phosphates in neutral aqueous solutions, J. Chem. Soc. Faraday Trans., 91, 3499-3503 (1995).   DOI
29 M. J. Root, Inhibition of the amorphous calcium phosphate phase transformation reaction by polyphosphates and metal ions, Calcif. Tissue Int., 47, 112-116 (1990).   DOI
30 C. Qi, Q. L. Tang, Y. J. Zhu, X. Y. Zhao, and F. Chen, Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5'-triphosphate disodium salt as phosphorus source, Mater. Lett., 85, 71-73 (2012).   DOI
31 F. Syberg, Y. Suveyzdis, C. Koetting, K. Gerwert, and E. Hofmann, Time-resolved Fourier transform infrared spectroscopy of the nucleotide-binding domain from the ATP-binding cassette transporter MsbA, J. Biol. Chem., 287, 23923-23931 (2012).   DOI
32 M. Liu, M. Krasteva, and A. Barth, Interaction of phosphate groups of ATP and aspartyl phosphate with the Sarcoplasmic Reticulum $Ca^{2+}$-ATPase: A FTIR study, Biophys. J., 89, 4352-4363 (2005).   DOI