Chemical Characterization of Oscillatory Zoned Tourmaline from Diaspore Nodule, an Aluminum-rich Clay Deposit, Milyang, South Korea

밀양 고알루미나 점토광상 다이아스포아 단괴내의 진동누대 전기석의 화학적 특징

  • 추창오 (경북대학교 자연과학대학 지질학과) ;
  • 김영규 (경북대학교 자연과학대학 지질학과)
  • Published : 2005.09.01

Abstract

Hydrothermal tourmaline occurs as aggregates or dissemination in the diaspore nodule from an aluminum-rich clay deposit, Milyang, southeastern Korea. Most crystals of tourmaline show complex textures that are finely zoned. The fine-scale chemical zonation of hydrothermal tourmaline reflects the fluctuation conditions that would be expected from fluid mixing in open systems. Oscillatory chemical zoning in tourmaline formed and showed similar patterns, regardless of its crystallographic directions. Mg was enriched in the early stage of crystal growth while Fe was enriched in the later stage, with fluctuations of the ratio of Fe to Mg. Chemical analysis, BSE images, and X-ray compositional maps confirm that the oscillatory Boning in tourmaline is exclusively controlled by the variations of Fe and Mg contents, but the contribution of boron to the zonation is insignificant. The fact that tourmaline altered to diaspore and dickite indicates that tourmaline was unstable with respect to these aluminous minerals as the B, Fe, and Mg activities decreased. Therefore, the aluminum activity may control the stability of tourmaline in the hydrothermal system.

밀양점토광상의 알루미늄이 풍부한 다이아스포아 단괴에서 열수변질 기원 전기석은 집합체나 미립으로 산출한다 대부분의 전기석 결정은 미세한 대구조가 특징적인데, 이는 열수변질 작용동안 개방계의 유체혼합과 같은 변동이 심한 환경에서 형성되었음을 지시한다. 본 전기석의 화학적 진동누대 구조의 양상은 결정축의 방향과는 무관하게 흡사한 특징을 보인다. Mg는 결정성장 초기, Fe는 후기 단계동안에 부화되었으며, Fe/Mg의 비는 규칙적으로 진동함을 보여 준다. 화학분석, 후방산란영상(BSE), X-선 화학분석도에 따르면 전기석내 진동누대구조는 Fe와 Mg 함량변화에 주로 제어되었으며 봉소함량의 기여도는 미미하다. 전기석이 다이아스포아와 딕카이트로 변질되는 것으로 볼 때 전기석은 B, Fe, Mg의 활동도가 감소하면서 이들 고알루미나 광물에 비하여 불안정해 진다. 그러므로 열수계내 알루미늄 활동도가 전기석의 안정성을 제어하는 것으로 볼 수 있다.

Keywords

References

  1. Bernard, F., Moutou, P., and Pichavant, M. (1985) Phase elations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J. Geol., 93, 271-291 https://doi.org/10.1086/628952
  2. Cavaretta, G. and Puxedda, M. (1990) Schorl-draviteferridravite tourmalines deposited by hydrothemal magmatic fluids during early evolution of the Larderello geothermal field, Italy. Econ. Geol., 85, 1236-1251 https://doi.org/10.2113/gsecongeo.85.6.1236
  3. Choo, C.O., Kim, J.J., and Kim, Y. (2001) Complex zoned tourmaline in the diaspore nodule from a hydrothermal kaolin deposit, Miryang, south Korea. 11st Annual Goldschmidt Conference, Program, 147
  4. Choo, C.O. and Kim. Y. (2003) Textural and spectroscopic studies on hydrothermal dumortierite from an AI-rich clay deposit, southeastern Korea. Mineral. Mag., 67, 799-806 https://doi.org/10.1180/0026461036740136
  5. Dutrow, B.L. and Henry, D.J. (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids. Can. Mineral., 38, 131-143 https://doi.org/10.2113/gscanmin.38.1.131
  6. Fuchs, Y., Lagache, M., and Linares, J. (1998) Fetourmaline synthesis under different T and $fO_2$ conditions. Am. Mineral., 83, 525-534 https://doi.org/10.2138/am-1998-5-612
  7. Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tour- maline and its petrologic applications. Rev. Mineral., 33, 500-555
  8. Henry. D.J., Kirkland, B.L., and Kirkland, D.W. (1999) Sector-zoned tourmaline from the cap rock of a salt dome. Eur. J. Mineral., 11, 263-280 https://doi.org/10.1127/ejm/11/2/0263
  9. Hong, S.H. and Choi, P.Y. (1988) Geological report of the Yuchon sheet. Korea Institute of Energy and Resources, 1-26
  10. Hwang, S.K. and Kim, S.W. (1994) Petrology of Cretaceous volcanic rocks in the Milyang- Yangsan area, Korea (I): Petrotectonic setting. Jour. Geol. Soc. Korea, 30, 229-241
  11. Jin, M.S., Kim, S.J., and Shin, S.C (1991) Fission track and K-Ar ages of granites in the southeastern Korea. Korea Inst. Geol. Mining KR., 90-1B2, 57-98
  12. Kim. S.J., Kim, J.J., and Choo, C.O. (1992) Mineralogy and genesis of hydrothermal deposits in the southeastern part of Korean peninsula: (3) Miryang napseok deposit. Jour. Mineral. Soc. Korea, 5, 93-101
  13. Koh, S.M., Tagaki, T., Kim, M.Y., Naito, K., Hong, S.S., and Sudo, S. (2000) Geological and geochemical characteristics of the hydrothermal clay alteration in south Korea. Resource Geol., 50, 229-242 https://doi.org/10.1111/j.1751-3928.2000.tb00072.x
  14. Lee, K., Moo, H.-S., Song, Y., and Kim, I.I. (1993) Wall rock alteration and genetic environment of the Milyrang pyrophyllite deposit. Jour. Korean Inst. Mining Geol., 26, 289-309
  15. London, D. and Manning, D.C. (1995) Chemical variation and significance of tourmaline from southwest England. Econ. Geol., 90, 495-519 https://doi.org/10.2113/gsecongeo.90.3.495
  16. London, D., Morgan, G.V., and Wolf, M.B. (1996) Boron in granitic rocks and their contact aureoles. Rev. Mineral., 33, 299-330
  17. London, D. (1999) Stability of tourmaline in peraluminous granite systems: the boron cycle from anatexis to hydrothermal aureoles. Eur. Jour. Mineral., 11, 253-262 https://doi.org/10.1127/ejm/11/2/0253
  18. Michailidis, K., Kassoli-Fournaraki, A., and Dietrich, R. V. (1996) Origin of zoned tourmalines in graphite-rich metasedimentary rocks from Macedonia, northern Greece. Eur. J. Mineral., 8, 393-404 https://doi.org/10.1127/ejm/8/2/0393
  19. Min, K.D., Kim, O.J., Lee, D.S., and Choo, S.H. (1982) Applicability of plate tectonics to the post Late Cretaceous igneous activities and mineralization in outhern part of South Korea(l). Jour. Korea Inst. Mining. Geol., 15,123-154
  20. Morgan, G.B., VI and London, D. (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: Implications for tourmaline stability and partial melting in mafic rocks. Contrib. Mineral. Petrol., 102, 281-297 https://doi.org/10.1007/BF00373721
  21. Nieva, A.M.R. (1974) Geochemistry of tourmaline (schorlite) from granites, aplites, and pegmatites from northern Portugal. Geochim. Cosmochim. Acta, 38, 1307-1317 https://doi.org/10.1016/0016-7037(74)90124-0
  22. Papezik, V.S. and Keats, H.F. (1976) Diaspore in a pyrophyllite deposit on the Avalon peninsula, Newfoundland. Can. Mineral., 14,442-449
  23. Power, G.M. (1968) Chemical variation in tourmalines from southwest England. Mineral. Mag., 36, 1078-1089 https://doi.org/10.1180/minmag.1968.036.284.05
  24. Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. Can. Mineral., 43, 1111-1126
  25. Slack, J.F. (1996) Tourmaline associations with hydrothermal ore deposits. Rev. Mineral., 33, 559-643
  26. Taylor, B.E. and Slack, J.F.(1984) Tourmalines from Appalachian-Caledonian massive sulfide deposits: textural, chemical and isotopic relationships. Econ. Geol., 79, 1703-1726 https://doi.org/10.2113/gsecongeo.79.7.1703
  27. Werding, G. and Schreyer, W. (1996) Experimental studies on borosilicates and selected borates. Rev. Mineral., 33,118-163
  28. Wilke, M., Nabelek, P.I., and Glascock, M.D. (2002) B and Li in Proterozoic metapelites from the Black Hills, U.S.A: Implications for the origin of leucogranitic magmas. Am. Mineral., 87, 491-500 https://doi.org/10.2138/am-2002-0412
  29. Yardley, B.W.D., Rochelle, C.A., Bamicoat, A.C., and Lloyd, G.E. (1991) Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Mineral. Mag., 55, 357-365 https://doi.org/10.1180/minmag.1991.055.380.06