• Title/Summary/Keyword: Hydrothermal Method

Search Result 640, Processing Time 0.027 seconds

Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support (폼 형태의 다공성 탄화규소 지지체 표면 위에 ZSM-5 합성)

  • Jung, Eunjin;Lee, Yoon Joo;Won, Ji Yeon;Kim, Younghee;Kim, Soo Ryong;Shin, Dong-Geun;Lee, Hyun Jae;Kwon, Woo Teck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.425-430
    • /
    • 2015
  • ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at $150^{\circ}C$ using TEOS, $Al(NO_3){\cdot}9H_2O$ and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed $1{\sim}3{\mu}m$ sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about $10{\AA}$ size drastically enhanced and surface area increased from $0.83m^2/g$ to $30.75m^2/g$ after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

The Effect of Additives on the Preparation of Nanosized TiO2 Particles (나노크기 TiO2의 제조에 미치는 첨가제 영향)

  • Kim, Seok-Hyeon;Na, Seok-En;Kim, Si-Young;Kim, Seong-Soo;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.426-431
    • /
    • 2013
  • Nanosized $TiO_2$ particles were prepared from titanium (IV) sulfate solution using base solutions at low reaction temperature ($95^{\circ}C$) and atmospheric pressure by hydrothermal precipitation method without calcination. The effects of preparation conditions, such as kind of base solutions (NaOH, $NH_4OH$, Monoethanolamine, Diethanolamine, Triethanolamine) and surfactants (CTAB, Span 20, SDBS), concentration of surfactants, temperature and pH, on the physical properties of $TiO_2$ particles have been investigated by XRD, SEM and Zeta-potential meter. Absorption area was also investigated by DRS in order to confirm the photocatalytic activity of the nanosized $TiO_2$ particles. It was turned out that, among base solutions, NaOH provides the smallest $TiO_2$ particles with excellent crystallinity. And cationic surfactant (CTAB) prepared smaller $TiO_2$ particles than any other surfactants. When CTAB is added in the concentration ratio of $Ti(SO_4)_2$:CTAB=10:1, $TiO_2$ particles with particle diameter of 5.8 nm were prepared. This is approximately 1/10 of that prepared without CTAB.

Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries (Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구)

  • Lim, Young Rok;Lim, SooA;Park, Jeunghee;Cho, Won Il;Lim, Sang Hoo;Cha, Eun Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method (초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성)

  • Choo, Soyeon;Beom, YunGyeong;Kim, Sungsu;Han, Kyooseung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation (폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구)

  • MinHee Won;WooRi Cho;Jin Man Chang;Jai-young Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2023
  • There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1) (M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1))

  • Bae, Sang-Won;Kim, Hyun-Gyu;Ji, Sang-Min;Jang, Jum-Suk;Jeong, Euh-Duck;Hong, Suk-Joon;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

Surface coating and characterizations of non-swelling property mica (비팽윤성 운모의 표면코팅 및 특성평가)

  • Park, Ra-Young;Seok, Jeong-Won;Park, Sun-Min;Kim, Pan-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.131-135
    • /
    • 2008
  • This study is to establish the coating technique for synthetic mica and to prepare synthetic mica with the non-aqueous property. The surface coating of synthetic mica is prepared with stearic acid using the high speed stirrer. The characterizations for mica powders coated the stearic acid are carried out by the deposition test, XRD and SEM. The results of research could be coated the stearic acid on the mica by 1600 rpm/min at $70^{\circ}C$ for 10 min. From the observation of SEM was found that the non-aqueous property mica could obtained by mixture ratios for stearic acid and mica, the inner temperature and rotation speed of the stirrer but treated time be unrelated.

Synthesis, Characterization and Photocatalytic Activity of Reduced Graphene Oxide-Ce/ZnO Composites

  • Zhang, Wenjun;Zhao, Jinfeng;Zou, Xuefeng
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • A series of Ce-doped ZnO (Ce/ZnO) nanostructures were fabricated using the co-precipitation method, then a simply nontoxic hydrothermal approach was proposed for preparation of reduced graphene oxide (rGO)-Ce/ZnO composites. The synthesized composites were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), electrochemical impedance spectroscopy (EIS), UV-vis diffuse reflectance spectroscopy (DRS) techniques and Raman pattern. The as-synthesized rGO-Ce/ZnO composites showed high photodecomposition efficiency in comparison with the rGO-ZnO, Ce/ZnO, pure ZnO under UV, visible-light and sunlight irradiation. The degradation of methylene blue (MB) (10 mg/L, 100ml) by 95.8% within 60 min by using rGO-2 (10 mg) under sunlight irradiation was observed. The repeated use of the rGO-2 was investigated, and the results showed almost no decay in the catalytic activity.

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.