DOI QR코드

DOI QR Code

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation

폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구

  • MinHee Won (Department of Environmental Engineering, University of Seoul) ;
  • WooRi Cho (Department of Environmental Engineering, University of Seoul) ;
  • Jin Man Chang (Department of Environmental Engineering, University of Seoul) ;
  • Jai-young Lee (Department of Environmental Engineering, University of Seoul)
  • 원민희 (서울시립대학교 환경공학부) ;
  • 조우리 (서울시립대학교 환경공학부) ;
  • 장진만 (서울시립대학교 환경공학부) ;
  • 이재영 (서울시립대학교 환경공학부)
  • Received : 2023.12.11
  • Accepted : 2023.12.19
  • Published : 2023.12.31

Abstract

There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

흡착을 이용한 오염물질 정화 방법에 많은 관심이 집중되고 있으며, 최근에는 바이오차를 이용하여 유기 및 무기오염물질 제거에도 이용할 수 있다는 연구가 진행되고 있다. 특히 폐자원 바이오매스로 폐목재는 바이오매스 재활용 방안이 필요한 상황으로 폐목재를 이용하여 생성된 바이오차를 흡착용량을 증가하기 위한 방법이 필요하다. 저온고압을 이용하여 에너지 소비가 낮고 수분 제거 전처리가 필요없는 열수가압탄화(Hydrothermal Carbonization, HTC)를 이용하여 탄화하여 바이오차를 생성하고, KOH, NaOH, ZnCl2 약품을 이용한 화학적 활성화법으로 생성된 바이오차를 약품별 활성화에 따른 요오드 흡착능, 비표면적, 세공크기, 세공부피, 세공분포 및 SEM을 분석하여 흡착특성을 파악하였다. HTC 300℃, 4 hr에서 생성된 바이오차를 KOH, NaOH, ZnCl2 약품별로 활성화로 생성된 바이오차 중 요오드흡착능이 높은 바이오차를 선정하여 비표면적, 세공부피, 세공크기 및 세공분포를 분석한 결과, 비표면적은 774~1.387 m2/g으로 활성탄과 같은 높은 비표면적을 나타냈으며, 평균세공크기 21~24 Å 범위의 미세공이 형성되었음을 확인하였다. 또한 SEM 관찰한 결과 활성화에 따라 표면이 일정한 형태의 균일한 세공이 발달되고 세공의 수가 증가하는 것을 확인할 수 있었다.

Keywords

References

  1. Inyang, M. and Dickenson, E., "The Potential Role of Biochar in the Removal of Organic and Microbial Contaminants from Potable and Reuse Water: A Review," Chemosphere, 134, 232-240 (2015).
  2. Pourhashem, G., Hung, S. Y., Medlock, K. B., and Masiello, C. A., "Policy Support for Biochar: Review and Recommendations," GCB Bioenergy, 11, 364-380 (2019).
  3. Mandal, A., Singh, N., and Purakayastha, T. J., "Characterization of Pesticide Sorption Behaviour of Slow Pyrolysis Biochars as Low Cost Adsorbent for Atrazine and Imidacloprid Removal," Sci. Total Environ., 577, 376-385 (2017).
  4. Yoon, J. Y., Kim, J. E., Song, H. J, Oh, K. B., Jo, J. W., Yang, Y. H., Lee, S. H., Kang, G., Kim, H. J., and Choi, Y.-K., "Assessment of Adsorptive Behaviors and Properties of Grape Pomace-derived Biochar as Adsorbent for Removal of Cymoxanil Pesticide," Environ. Technol. Innov., 21, 101242 (2021).
  5. Baharum, N. A., Nasir, H. M., Ishak, M. Y., Isa, N. M., Hassan, M. A., and Aris, A. Z., "Highly Efficient Removal of Diazinon Pesticide from Aqueous Solutions by Using Coconut Shell-modified Biochar," Arab. J. Chem., 13, 6106-6121 (2020).
  6. Jirka, S. and Tomlinson, T., "2013 State of the Biochar Industry," International Biochar Initiative, 1-61 (2014).
  7. Chung, C.-k., "A Study on the Low Temperature Pyrolysis of Discarded Tree Debris for Commercial Production of Activated Carbon," Journal of Institute of Industrial Technology, 16, 315-326 (2011).
  8. Won, M. H., Cho, W. R., Chang, J. M., Park, J. S., and Lee, J. Y., "Characterization of Waste Wood Biochar-Based Activated Carbon Synthesized by Hydrothermal Carbonization," J. Korea Soc. Waste Manag., 39, 280-289 (2022).
  9. Woo, R. J., "The Characteristics of Biochar with Food Waste by Hydrothermal Carbonization," Master Thesis, University of Seoul (2015).
  10. Park, H. W., Oh, N. A., Oh, S. J., Cho, W. R., Chang, J. M., and Lee, J. Y., "Recycling Organic Sludge into Modification Block by Hydrothermal Carbonization (HTC)," Clean Technol., 29, 102-108 (2023).
  11. Park, Y. T., "Activated Carbon Technology," Donghwa, Gyunggi (2007).
  12. Sevilla, M. and Fuertes, A. B., "Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides," Chemistry A European Journal, 15, 4195-4203 (2009). https://doi.org/10.1002/chem.200802097
  13. Marsh, H., Crawford, D., O'Grady, T. M., and Wennerberg, A., "Carbons of High Surface Area, A Study by Adsorption and High Resolution Electron Microscopy," Carbon, 20, 419-426 (1982). https://doi.org/10.1016/0008-6223(82)90042-2
  14. Lee, W. H. and Reucroft, P. J., "Vopar Adsorption on Coal and Wood-based Chemically Activated Carbon (II) Adsorption of Organic Vapor," Carbon, 37, 15-20 (1999).
  15. Kim, S. C. and Hong, I. K., "Manufacturing and Physical Properties of Coal Based Activated Carbon," J. Korean Soc. Environ. Eng., 20, 745-754 (1998).
  16. Lee, S. W., Moon, J. C., Lee, C. H., Ryu, D. C., Choi, D. H., Ryu, B. S., and Song, S. K., "Analysis of Pore Characteristics between Commercial Activated Carbons and Domestic Anthracite-based Activated Carbon," J. Korean Soc. Environ. Eng., 23, 1211-1218 (2001).