DOI QR코드

DOI QR Code

Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support

폼 형태의 다공성 탄화규소 지지체 표면 위에 ZSM-5 합성

  • Jung, Eunjin (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Won, Ji Yeon (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Hyun Jae (Enbion Inc.) ;
  • Kwon, Woo Teck (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2014.11.15
  • Accepted : 2014.12.11
  • Published : 2015.08.01

Abstract

ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at $150^{\circ}C$ using TEOS, $Al(NO_3){\cdot}9H_2O$ and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed $1{\sim}3{\mu}m$ sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about $10{\AA}$ size drastically enhanced and surface area increased from $0.83m^2/g$ to $30.75m^2/g$ after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

고분자 복제방법을 이용하여 제조한 폼 형태의 다공성 탄화규소 표면에 수열 합성 방법을 적용하여 ZSM-5를 합성하였다. 다공성 탄화규소 표면으로부터 ZSM-5가 합성될 수 있도록 유도하기 위하여 합성단계에 앞서 탄화규소 표면에 산화 층을 형성하였다. 수열합성 반응은 산화처리 된 다공성 탄화규소와 TEOS, $Al(NO_3){\cdot}9H_2O$ 및 TPAOH를 원료로 사용하여 $150^{\circ}C$에서 7시간 진행하였다. XRD 및 SEM 분석을 통하여 $1{\sim}3{\mu}m$ 크기의 ZSM-5가 다공성 탄화규소 표면에 코팅되어 성장하였음을 확인하였다. BET 분석결과 ZSM-5 합성 후에 $10{\AA}$이하의 미세기공이 급격히 증가하였으며, 비표면적이 $0.83m^2/g$에서 $30.75m^2/g$으로 급격히 증가되었음을 알 수 있었다.

Keywords

References

  1. Jens, W., "Zeolites and Catalysis," Solid State Ion., 132, 175-188(2000).
  2. Rona, J., Donahoe and J. G. Liou., "Synthesis and Characterization of Zeolites in the Synthesis of $Na_{2}O-K_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$," Clay Clay Min., 32, 433-443(1984). https://doi.org/10.1346/CCMN.1984.0320601
  3. Van Donk, S., Janssen, A. H., Bitter, J. H. and de Jong, K. P., "Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts," Catal. Rev., 45, 297-319(2003). https://doi.org/10.1081/CR-120023908
  4. Kim, H. G., Yang, Y. C., Jeong, K. E., Kim, T. Y., Jeong, S. Y., Kim, C. U., Jhung, S. H. and Lee, K. Y., "Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst," Korean Chem. Eng. Res., 51, 418-425(2013). https://doi.org/10.9713/kcer.2013.51.4.418
  5. Moulijn, J. A., Diepen, A. E. and Kapteijn, F., "Catalyst Deactivation : Is It Predictable? What to do," Appl. Catal A-Gen., 212, 3-16(2001). https://doi.org/10.1016/S0926-860X(00)00842-5
  6. Gayubo, A. G., Aguayo, A. T., Atutxa, A., Prieto, R. and Bilbao, J., "Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons," Energy Fuels, 18, 1640-1647(2004). https://doi.org/10.1021/ef040027u
  7. Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G. and Jensen, A. D., "A Review of Catalytic Upgrading of Bio- Oil to Engine Fuels," Appl. Catal. A-Gen., 407, 1-19(2011). https://doi.org/10.1016/j.apcata.2011.08.046
  8. Sepulveda P., "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76, 61-65(1997).
  9. Fukuura, I. and Asano, T., "Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite and Zirconia," 165-74 in Fine Ceramics, Edited by S. Saito. Elsevier, New York(1985).
  10. Zhu, X. W., Jiang, D. L., Tan, S. H. and Zhang, Z., "Improvement in the Strut Thickness of Reticulated Porous Ceramics," J. Am. Ceram. Soc., 84, 1654-1656(2001).
  11. Studart, A. R., Gonzenbach, U. T., Tervoort, E. and Gauckler, L. J., "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89, 1771-1789(2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  12. Rauscher, M., Selvam, T., Schwieger, W. and Freude, D., "Hydrothermal Transformation of Porous Glass Granules into ZSM-5 Granules," Microporous Mesoporous Mater., 75, 195-202(2004). https://doi.org/10.1016/j.micromeso.2004.06.029
  13. Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P. and Pereira, M. M., "Hierarchical Pore ZSM-5 Zeolite Structures: From Microto Macro-Engineering of Structured Catalysts," Chem. Eng. J., 161, 397-402(2010). https://doi.org/10.1016/j.cej.2009.09.041
  14. Eslava, S., Iacopi, F., Baklanov, M. R., Kirschhock, C. E, Maex, K. and Martens, J. A., "Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:Hydrophobization, Functionalization, and Cross-Linking of Grains," J. Am. Chem. Soc., 129, 9288-9289(2007). https://doi.org/10.1021/ja0723737
  15. Ledoux, M. J. and Pham-Huu, C. "Silicon Carbide: A Novel Catalyst Support for Heterogeneous Catalysis," Cattech, 5, 226-246(2001). https://doi.org/10.1023/A:1014092930183
  16. Moene, R., Makkee, M. and Moulijn, J. A., "High Surface Area Silicon Carbide as Catalyst Support Characterization and Stability," Appl. Catal. A: Gen., 167, 321-330(1998). https://doi.org/10.1016/S0926-860X(97)00326-8
  17. Krawiec, P. and Kaskel, S. "Thermal Stability of High Surface Area Silicon Carbide Materials," J. Solid State Chem., 179, 2281-2289(2006). https://doi.org/10.1016/j.jssc.2006.02.034
  18. Kwon, W. T., Kim, S. R., Kim, Y., Lee, Y. J., Won, J., Park, W. K. and Oh, S. C., "Effect of Temperature and Carbon Contents on the Synthesis of $\beta$-SiC from Silicon Sludge by Direct Carbonization Method," Mater. Sci. Forum, 724, 45-48(2012). https://doi.org/10.4028/www.scientific.net/MSF.724.45
  19. Won, J. Y., Kim, S. R., Kim, Y., Shin, D. G., Lee, Y. J. and Kwon, W. T., "Preparation of Porous Silicon Carbide Foam Using a Polymer Replica Method(in Korean)," J. Environ. Therm. Eng., 11, 6-12(2014).
  20. Leroi, P., Madani, B., Pham-Huu, C., Ledoux, M. J., Savin-Poncet, S. and Bousquet, J. L., "Ni/SiC: A Stable and Active Catalyst for Catalytic Partial Oxidation of Methane," Catal. Today., 91-92, 53-58(2004). https://doi.org/10.1016/j.cattod.2004.03.009
  21. Wine, G., Ledox, M. J. and Pham-Huu, C., "Supported BETA Zeolite on Preshaped $\beta$-SiC as Clean Friedel-Crafts Liquid-Phase Catalyst," Top. Catal., 45, 111-116(2007). https://doi.org/10.1007/s11244-007-0249-0
  22. Seijger, G. B. F., Oudshoorn, O. L., Van Kooten, W. E. J., Jansen, J. C., Van Bekkum, H., Van Den Bleek, C. M. and Calis, H. P. A., "In Situ Synthesis of Binderless ZSM-5 Zeolitic Coatings on Ceramic Foam Supports," Microporous Mesoporous Mater., 39, 195-204(2000). https://doi.org/10.1016/S1387-1811(00)00196-7
  23. Jiao, Y., Jiang, C., Yang, Z. and Zhang, J., "Controllable Synthesis of ZSM-5 Coatings on SiC foam Support for MTP Application," Microporous Mesoporous Mater., 162, 152-158(2012). https://doi.org/10.1016/j.micromeso.2012.05.034
  24. Losch, P., Boltz, M., Soukup, K., Song, I. H., Yun, H. S. and Louis, B., "Binderless Zeolite Coating on Macroporous $\alpha$-SiC Foam," Micropor. Mesopor. Mater., 188, 99-107(2014). https://doi.org/10.1016/j.micromeso.2014.01.008
  25. Inova, S., Louis, B., Madani, B., Tessonnier. J. P., Ledoux, M. J. and Pham-Huu, C., "ZSM-5 Coating on $\beta$-SiC Monoliths: Possible New Structured Catalyst for the Methanol-to-Olefins Process," J. Phys. Chem. C., 111, 4368-4374(2007).
  26. Katsuki, H., Furuta, S. and Komameni, S., "Formation of Novel ZSM5/Porous Mullite Composite from Sintered Kaolin Honeycomb by Hydrothermal Reaction," J. Am. Ceram. Soc., 83 1093-1097(2000).
  27. First, E. L., Gounaris, C. E., Wei, J. and Floudas, C. A., "Computational Characterization of Zeolite Porous Networks: An Automated Approach," Phys. Chem. Chem. Phys., 13, 17339-17358(2011). https://doi.org/10.1039/c1cp21731c

Cited by

  1. 초고온복합소재용 프리세라믹폴리머 합성 및 응용기술 vol.30, pp.2, 2015, https://doi.org/10.7234/composres.2017.30.2.102