Browse > Article
http://dx.doi.org/10.9713/kcer.2015.53.4.425

Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support  

Jung, Eunjin (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Lee, Yoon Joo (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Won, Ji Yeon (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Kim, Younghee (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Kim, Soo Ryong (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Shin, Dong-Geun (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Lee, Hyun Jae (Enbion Inc.)
Kwon, Woo Teck (Energy & Environmental Devision, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Chemical Engineering Research / v.53, no.4, 2015 , pp. 425-430 More about this Journal
Abstract
ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at $150^{\circ}C$ using TEOS, $Al(NO_3){\cdot}9H_2O$ and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed $1{\sim}3{\mu}m$ sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about $10{\AA}$ size drastically enhanced and surface area increased from $0.83m^2/g$ to $30.75m^2/g$ after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.
Keywords
Zeolite; ZSM-5; Porous; Silicon Carbide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jens, W., "Zeolites and Catalysis," Solid State Ion., 132, 175-188(2000).
2 Rona, J., Donahoe and J. G. Liou., "Synthesis and Characterization of Zeolites in the Synthesis of $Na_{2}O-K_{2}O-Al_{2}O_{3}-SiO_{2}-H_{2}O$," Clay Clay Min., 32, 433-443(1984).   DOI
3 Van Donk, S., Janssen, A. H., Bitter, J. H. and de Jong, K. P., "Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts," Catal. Rev., 45, 297-319(2003).   DOI
4 Kim, H. G., Yang, Y. C., Jeong, K. E., Kim, T. Y., Jeong, S. Y., Kim, C. U., Jhung, S. H. and Lee, K. Y., "Effect of Metal Addition and Silica/Alumina Ratio of Zeolite on the Ethanol-to-Aromatics by Using Metal Supported ZSM-5 Catalyst," Korean Chem. Eng. Res., 51, 418-425(2013).   DOI
5 Moulijn, J. A., Diepen, A. E. and Kapteijn, F., "Catalyst Deactivation : Is It Predictable? What to do," Appl. Catal A-Gen., 212, 3-16(2001).   DOI
6 Gayubo, A. G., Aguayo, A. T., Atutxa, A., Prieto, R. and Bilbao, J., "Deactivation of a HZSM-5 Zeolite Catalyst in the Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons," Energy Fuels, 18, 1640-1647(2004).   DOI
7 Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G. and Jensen, A. D., "A Review of Catalytic Upgrading of Bio- Oil to Engine Fuels," Appl. Catal. A-Gen., 407, 1-19(2011).   DOI   ScienceOn
8 Sepulveda P., "Gelcasting Foams for Porous Ceramics," Am. Ceram. Soc. Bull., 76, 61-65(1997).
9 Fukuura, I. and Asano, T., "Fabrication and Properties of Some Oxide Ceramics: Alumina, Mullite and Zirconia," 165-74 in Fine Ceramics, Edited by S. Saito. Elsevier, New York(1985).
10 Zhu, X. W., Jiang, D. L., Tan, S. H. and Zhang, Z., "Improvement in the Strut Thickness of Reticulated Porous Ceramics," J. Am. Ceram. Soc., 84, 1654-1656(2001).
11 Studart, A. R., Gonzenbach, U. T., Tervoort, E. and Gauckler, L. J., "Processing Routes to Macroporous Ceramics: A Review," J. Am. Ceram. Soc., 89, 1771-1789(2006).   DOI
12 Rauscher, M., Selvam, T., Schwieger, W. and Freude, D., "Hydrothermal Transformation of Porous Glass Granules into ZSM-5 Granules," Microporous Mesoporous Mater., 75, 195-202(2004).   DOI
13 Louis, B., Ocampo, F., Yun, H. S., Tessonnier, J. P. and Pereira, M. M., "Hierarchical Pore ZSM-5 Zeolite Structures: From Microto Macro-Engineering of Structured Catalysts," Chem. Eng. J., 161, 397-402(2010).   DOI
14 Eslava, S., Iacopi, F., Baklanov, M. R., Kirschhock, C. E, Maex, K. and Martens, J. A., "Ultraviolet-Assisted Curing of Polycrystalline Pure-Silica Zeolites:Hydrophobization, Functionalization, and Cross-Linking of Grains," J. Am. Chem. Soc., 129, 9288-9289(2007).   DOI
15 Kwon, W. T., Kim, S. R., Kim, Y., Lee, Y. J., Won, J., Park, W. K. and Oh, S. C., "Effect of Temperature and Carbon Contents on the Synthesis of $\beta$-SiC from Silicon Sludge by Direct Carbonization Method," Mater. Sci. Forum, 724, 45-48(2012).   DOI
16 Ledoux, M. J. and Pham-Huu, C. "Silicon Carbide: A Novel Catalyst Support for Heterogeneous Catalysis," Cattech, 5, 226-246(2001).   DOI
17 Moene, R., Makkee, M. and Moulijn, J. A., "High Surface Area Silicon Carbide as Catalyst Support Characterization and Stability," Appl. Catal. A: Gen., 167, 321-330(1998).   DOI
18 Krawiec, P. and Kaskel, S. "Thermal Stability of High Surface Area Silicon Carbide Materials," J. Solid State Chem., 179, 2281-2289(2006).   DOI
19 Won, J. Y., Kim, S. R., Kim, Y., Shin, D. G., Lee, Y. J. and Kwon, W. T., "Preparation of Porous Silicon Carbide Foam Using a Polymer Replica Method(in Korean)," J. Environ. Therm. Eng., 11, 6-12(2014).
20 Leroi, P., Madani, B., Pham-Huu, C., Ledoux, M. J., Savin-Poncet, S. and Bousquet, J. L., "Ni/SiC: A Stable and Active Catalyst for Catalytic Partial Oxidation of Methane," Catal. Today., 91-92, 53-58(2004).   DOI
21 Wine, G., Ledox, M. J. and Pham-Huu, C., "Supported BETA Zeolite on Preshaped $\beta$-SiC as Clean Friedel-Crafts Liquid-Phase Catalyst," Top. Catal., 45, 111-116(2007).   DOI
22 Seijger, G. B. F., Oudshoorn, O. L., Van Kooten, W. E. J., Jansen, J. C., Van Bekkum, H., Van Den Bleek, C. M. and Calis, H. P. A., "In Situ Synthesis of Binderless ZSM-5 Zeolitic Coatings on Ceramic Foam Supports," Microporous Mesoporous Mater., 39, 195-204(2000).   DOI
23 Katsuki, H., Furuta, S. and Komameni, S., "Formation of Novel ZSM5/Porous Mullite Composite from Sintered Kaolin Honeycomb by Hydrothermal Reaction," J. Am. Ceram. Soc., 83 1093-1097(2000).
24 Jiao, Y., Jiang, C., Yang, Z. and Zhang, J., "Controllable Synthesis of ZSM-5 Coatings on SiC foam Support for MTP Application," Microporous Mesoporous Mater., 162, 152-158(2012).   DOI
25 Losch, P., Boltz, M., Soukup, K., Song, I. H., Yun, H. S. and Louis, B., "Binderless Zeolite Coating on Macroporous $\alpha$-SiC Foam," Micropor. Mesopor. Mater., 188, 99-107(2014).   DOI
26 Inova, S., Louis, B., Madani, B., Tessonnier. J. P., Ledoux, M. J. and Pham-Huu, C., "ZSM-5 Coating on $\beta$-SiC Monoliths: Possible New Structured Catalyst for the Methanol-to-Olefins Process," J. Phys. Chem. C., 111, 4368-4374(2007).
27 First, E. L., Gounaris, C. E., Wei, J. and Floudas, C. A., "Computational Characterization of Zeolite Porous Networks: An Automated Approach," Phys. Chem. Chem. Phys., 13, 17339-17358(2011).   DOI