DOI QR코드

DOI QR Code

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method

초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성

  • Choo, Soyeon (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Beom, YunGyeong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Sungsu (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Han, Kyooseung (Graduate School of Green Energy Technology, Chungnam National University)
  • 추소연 (충남대학교 녹색에너지기술전문대학원) ;
  • 범윤경 (충남대학교 정밀응용화학과) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원) ;
  • 한규승 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.07.16
  • Accepted : 2013.08.09
  • Published : 2013.08.31

Abstract

As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

리튬이온 전지의 양극물질로써, 초임계 수열합성법을 이용해 만들어진 분말은 각각 $850^{\circ}C$$900^{\circ}C$ 공기 분위기에서 10시간씩 소성하여 $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$를 합성하였다. 온도를 조절함에 따라 합성된 분말은 어떠한 영향을 받는지 x-ray pattern, SEM-image, 물리적 특성과 전기화학적 거동을 관찰해 연구하였다. 그 결과, $900^{\circ}C$에서 열처리된 물질의 입자크기가 $850^{\circ}C$에서 열처리된 물질에 비해 더 큰 것으로 나타났고, 특히 초기 가역용량 163.84 mAh/g (0.1 C/2.0-4.3 V), 186.87 mAh/g (0.1 C/2.0-4.5 V)의 가역용량을 나타내면서 훌륭한 전기화학적 거동을 보였으며, 50th cycle에서도 91.49%(0.2 C/2.0-4.3 V)와 90.36%(0.2 C/2.0-4.5 V)의 높은 용량 유지율을 보였다.

Keywords

References

  1. T. H. Cho, S. M. Park and M. Yoshio, 'Effect of synthesis condition on the structure and electrochemical properties of Li[$Ni_{1/3}Mn_{1/3}Co_{1/3}$]$O_{2}$perpared by carbonate coprecipitation method' J. Power Sources., 142, 306 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.016
  2. J.-H. Kim, 'Electrochemical performance of Li[$Li_{x}Ni_{(1−3x)/2}Mn_{(1+x)/2}$]$O_{2}$ cathode materials synthesized by a sol-gel method' J. Power Sources., 119, 166 (2003).
  3. E. Y. Bang, Daniel R. Mumm, and HyeRyoung Park, 'Lithium nickel cobalt oxides synthesized from $Li_{2}CO_{3}$, NiO and $Co_{3}O_{4}$ by the solid-state reaction method' Ceramics International., 38, 3635 (2012). https://doi.org/10.1016/j.ceramint.2012.01.002
  4. Y. Nishida, K. Nakane, and T. Satoh, 'Synthesis and properties of gallium-doped $LiNiO_{2}$ as the cathode material for lithium secondary batteries' J. Power Source., 68, 561 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4
  5. M. Y. Song, J. Song, E. Y. Bang, and D. R. Mumm, 'Electrochemical properties of $LiNi_{1-y}Co_{y}O_{2}$ cathode materials synthesized from different starting materials by the solid-state reaction method' CeramicsInternational., 35, 1625 (2009).
  6. Sung-Woo Cho, Jeong-Hun Ju andSeong-HyeonRyn, 'Structure and Electrochemical Characterization of Li $Ni_{0.5}Mn_{0.3}Co_{0.2}O_{2}$ as the Cathode Material Synthesized by Simple-combustion Method' J. Korean Electrochem. Soc., 13, 4 (2010).
  7. HU Chuan-yue, GUO Jun, DU Yong, XU Hong-hui, and HE Yue-hui, 'Effect of synthesis condition on layered Li[$Ni_{1/3}Co_{1/3}Mn_{1/3}$]$O_{2}$ positive-electrode via hydroxide co-precipitation method for lithium-ion batteries' Trans Nonferrous Met. Soc. China., 21, 114 (2011). https://doi.org/10.1016/S1003-6326(11)60686-9
  8. Ping He, Haoran Wang, Li Qi, and Tetsuya Osaka, 'Electrochemical characteristics of layerd $LiNi_{1/3}Mn_{1/3}Co_{13}O_{2}$ and with different synthesis conditions' J. Power Source., 160, 627 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.053
  9. Tao Wang, Zong-Huai Liu, Lihong Fan, Yinfeng Han andXiuhua Tang, 'Synthesis optimization of $Li_{1+x}[Mn_{0.45}Co_{0.4}0Ni_{0.15}]O_{2}$ with different spherical sizes via co-precipitation' Power Technology., 187, 124 (2008). https://doi.org/10.1016/j.powtec.2008.02.002
  10. Gi-Won Yoo, Hyo-Jin Jeon and Jong-Tae Son, 'Effect of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]$O_{2}$ Lithium-ion Cathode Materials' J. Korean Electrochem. Soc., 16, 59 (2013). https://doi.org/10.5229/JKES.2013.16.2.59
  11. De-Cheng Li, TakahisaMuta, Lian-Qi Zhang, Masaki Yoshio, and Hideyuki Noguchi, 'Effect of synthesis method on the electrochemical performance of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_{2}$' J. Power Source., 132, 150 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.016
  12. Hyun-Soo Kim, Ke-Tack Kim andPadikkasuPeriasamy, 'Synthesis, and Electrochemical Performance of $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_{2}$ Cathede Material for Lithium Rechargeable Battery' J. Electronic Materials Letter., 2, 119 (2006).
  13. Xiangfeng Zhang, Zhaoyin Wen, Xuelin Yang, XiaoxiongXu, and Jingxin Li, 'Synthesis and electrochemical behavior of a new layered cathode material $LiCo_{1/2}Mn_{1/3}Ni_{1/6}O_{2}$' J. Materials Research Bulletin., 41, 662 (2006). https://doi.org/10.1016/j.materresbull.2005.08.033

Cited by

  1. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149