• 제목/요약/키워드: Hydrostatic Stress

검색결과 138건 처리시간 0.025초

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2003년도 International Symposium on Clean Environment
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

응력불변량으로 표현한 일반화된 Hoek-Brown 파괴조건식의 등가 마찰각 및 점착력 (Equivalent Friction Angle and Cohesion of the Generalized Hoek-Brown Failure Criterion in terms of Stress Invariants)

  • 이연규;최병희
    • 터널과지하공간
    • /
    • 제22권6호
    • /
    • pp.462-470
    • /
    • 2012
  • 일반화된 Hoek-Brown 암반파괴조건식을 Mohr-Coulomb 파괴조건에 기초한 암반구조물 해석법에 적용시키기 위해서는 등가 마찰각과 등가 점착력을 계산하는 과정이 필요하다. Balmer(1952)이론에 기초한 기존의 접선 순간마찰각과 순간점착력 계산식은 최소주응력 ${\sigma}_3$의 함수로 표시되므로 등가 강도정수의 정수압 의존성 및 응력경로 의존성을 이해하는 데 적합지 않다. 이 연구에서는 응력불변량을 이용하여 일반화된 Hoek-Brown식의 접선 순간마찰각과 순간점착력 계산하는 방법을 제시하여 기존의 방법이 갖는 단점을 극복하였다. 제시된 방법을 이용한 예제 해석을 통해 접선 순간마찰각과 순간점착력의 정수압 의존특성 및 파괴곡면의 팔면체 단면에서 Lode각의 의존성을 고찰하였다. 접선 순간마찰각은 삼축신장 응력조건에서 가장 크며, 접선 순간점착력은 삼축압축 응력조건에서 가장 큰 것으로 나타났다. 접선 순간마찰각과 순간점착력의 정수압 및 Lode각 의존성은 GSI 값이 큰 양호한 암반에서 상대적으로 큰 것으로 나타났다.

수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석 (Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions)

  • 이휘승;허남수;이승건;박흥배;이성호
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.47-54
    • /
    • 2013
  • 본 논문에서는 Alloy 82/182를 용접재로 이용한 원자로 배관 이종금속 맞대기 용접부(Dissimilar Metal Butt Weld)에서의 PWSCC에 의한 균열성장 거동을 평가하였다. 이를 위해 먼저 유한요소 응력해석을 수행하여 이종금속용접부에서의 응력분포를 결정하였으며, 이때 이종금속용접 및 동종금속용접에 의한 용접잔류응력 외에 수압시험과 정상운전 조건도 고려하여 기계적 하중에 의한 응력 재분배를 고려하였다. 최종적으로 이와 같이 구한 응력 분포를 바탕으로 PWSCC에 의한 축방향 및 원주방향 가상 균열의 균열성장 거동을 평가하여 PWSCC 균열 성장량을 계산하였다. 본 논문의 결과는 향후 PWSCC에 의한 원자로 배관 이종금속 맞대기 용접부의 균열성장 거동 예측에 적용될 수 있다.

The influence of initial stress on wave propagation and dynamic elastic coefficients

  • Li, Xibing;Tao, Ming
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.377-390
    • /
    • 2015
  • The governing equations of wave propagation in one dimension of elastic continuum materials are investigated by taking the influence of the initial stress into account. After a short review of the theory of elastic wave propagation in a rock mass with an initial stress, results indicate that the initial stress differentially influences P-wave and S-wave propagation. For example, when the initial stress is homogeneous, for the P-wave, the initial stress only affects the magnitude of the elastic coefficients, but for the S-wave, the initial stress not only influences the elastic coefficients but also changes the governing equation of wave propagation. In addition, the P-wave and S-wave velocities were measured for granite samples at a low initial stress state; the results indicate that the seismic velocities increase with the initial stress. The analysis of the previous data of seismic velocities and elastic coefficients in rocks under ultra-high hydrostatic initial stress are also investigated.

멤브레인의 주름 형상이 응력거동에 미치는 영향에 관한 수치적 해석 (Numerical Analysis on the Stress Behaviours Due to Geometry Effects of the Membrane Corrugation)

  • 김청균;이영숙;차백순;김영규;윤인수;홍성호
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.21-26
    • /
    • 1997
  • 본 논문에서는 비선형 유한요소해석 프로그램을 이용하여 초저온 액체에 의한 정압과 열하중을 받는 멤브레인 구조물의 응력기동과 응력수준을 6가지 주름모델에 대한 수치적 해석결과를 제시하였다. 맴브레인 판재의 상면을 따라 최대 평균법선 응력분포에 관한 여러 가지 기하학적 주름의 3차원 해석을 수행하였고, 이들 주름형상에 대한 유한요소해석 결과를 비교$\cdot$고찰하였다. 링 마디식 모델의 주름 형상은 작은 코너반경과 정점곡률을 갖는 테크니가즈식 주름에 비하여 효과적으로 거동하고 있음을 보여주고 있다. 유한요소해석 결과예 의하면 LNG 저장탱크에 이들 모델을 사용할 경우 링 마디식 주름이 여타 주름 모델에 비하여 가장 깊은 180m에서도 사용될 수 있음을 보여준다.

  • PDF

기계적 응력이완 방법에 의한 원전기기 용접부의 잔류응력 재분포 (Residual Stress Redistribution on Welds of Nuclear Component by Mechanical Stress Relieving Methods)

  • 이세환;김종성;진태은
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.51-58
    • /
    • 2004
  • Residual stresses, which can be produced during the welding process, play an important role in an industrial field. Welding residual stresses are exerting negative effect on the fatigue behavior and integrity of structure. In this study, as a result of the thermal elasto-plastic finite element analysis for the welds of a nuclear component, the residual stress distributions are estimated for as-welded condition. Also, finite element techniques are developed to simulate the relaxation of the residual stresses according to the various mechanical stress relieving(MSR) loads such as hydrostatic pressure loading, tensile pipe-end loading, and mechanical stress improvement process(MSIP) loading. Finally, the results of residual stress redistributions for various loading conditions are compared and reviewed qualitatively and quantitatively to find an optimum loading condition.

Stress and Stress Voiding in Cu/Low-k Interconnects

  • Paik, Jong-Min;Park, Hyun;Joo, Young-Chang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.114-121
    • /
    • 2003
  • Through comparing stress state of TEOS and SiLK-embedded structures, the effect of low-k materials on stress and stress distribution in via-line structures were investigated using three-dimensional finite element analyses. In the case of TEOS-embedded via-line structures, hydrostatic stress was concentrated at the via and the top of the lines, where the void was suspected to nucleate. On the other hand, in the via-line structures integrated with SiLK, large von-Mises stress is maintained at the via, thus deformation of via is expected as the main failure mode. A good correlation between the calculated results and experimentally observed failure modes according to dielectric materials was obtained.

고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구 (A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump)

  • 고성위;김병탁
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(II) (The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) - II)

  • 서영원;정하국;나경환;윤덕재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2005
  • In hydrostatic extrusion the billet in the container is extruded through a die with a liquid acting as a pressure medium, instead of by the direct application of the load by a ram. And the extrusion pressure can be affected by the flow stress and they are affected by the temperature. So in this study the temperature is the main issue with a extrusion ratio and a half die angle. As extrusion temperature goes down from $300^{\circ}C$ to $200^{\circ}C$, tensile strength goes up to 310MPa. Because velocity of extrusion is higher than the conventional extrusion, there is another characteristic in the sense of microstrure. The temperature was sotted to $300^{\circ}C,\;250^{\circ}C,\;200^{\circ}C$, respectively. There is a increase of extrusion pressure abot $15\%$.

  • PDF

Stress Profile Dependence of the Optical Properties in Strained Quantum Wire Arrays

  • Yi, Jong-Chang;Ji, Jeong-Beom
    • Journal of the Optical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 2003
  • The effects of strain distribution in quantum wire arrays have been analyzed using a finite-element method including both the hydrostatic and shear strain components. Their effects on the optical properties of the quantum wire arrays are assessed for various types of stress profiles by calculating the optical gain and the polarization dependence. The results show unique polarization dependency, which can be exploited either for the single polarization or the polarization-independent operation in quantum wire photonic devices.