• Title/Summary/Keyword: Hydroponic

Search Result 432, Processing Time 0.022 seconds

Change of Hydroponic Components by Plasma Treatment (플라즈마 처리에 의한 양액 성분 변화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.363-368
    • /
    • 2012
  • The influence of plasma discharge on the nutrient components ($NO_3$-N, $NH_4$-N, $PO_4$-P, K, Ca, and Mg) and water quality [pH, ORP (oxidation-reduction potential) and electric conductivity] of hydroponic water were investigated. It was observed that the $NH_4$-N, $PO_4$-P, K, Ca, and Mg were kept at the constant concentrations for plasma discharging of 90 min. On the other hand, $NO_3$-N concentration was increased with proceeding of the plasma discharge. The increase of $NO_3$-N concentration was considered with the fact that nitric acid was created from nitrogen among supplying air for the insulation of inside of dielectric barrier. ORP and electric conductivity was increased with plasma discharging time. However, pH was decrease with what because of the generation of the nitric acid. When adjusting the hydroponic ingredients, pH and conductivity must to be considered because of the change of pH and conductivitiy with the discharging.

Comparison of Generated Loads by Hydroponics of Strawberry, Tomato, and Paprika in Gyeongsangnam-do (경남지역 딸기, 토마토, 파프리카 양액재배에 따른 발생부하량 비교)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.73-81
    • /
    • 2021
  • The objective of this study was to analyze the waste nutrient generation loads from hydroponics for three major crops in Gyeongsangnam-do. Study hydroponic farms were selected for the three major crops such as paprika, strawberry, tomato based on the agricultural statistics data and field investigation. The flow amount and water quality for inflow and outflow of study hydroponic farms were monitored and analyzed on a monthly basis. Monitored samples were analyzed in terms of DO, BOD, T-N, T-P, SS, and EC. The generated load of BOD, T-N, and T-P were calculated from the monitored flow and water quality. The monitoring results showed that the drainage ratio for the circular hydroponic farm was lower than the non-circular hydroponic farm because the outflow from the circular hydroponics were much lower than that from the non-circular. The generated load calculation results showed that the BOD tended to have a smaller value than the TMDLs guideline for land, while T-N and T-P showed higher value than that from the TMDLs guideline. In order to effectively manage the pollutant load discharged from the hydroponics farming complex, it is necessary to manage the non-circulating hydroponics farm. To improve water quality, it is necessary to gradually expand the circulating hydroponics farm through policy and economic support.

Antioxidant and Hepatoprotective Effects of Hydroponic-cultured Ginseng Folium by fermentation (발효에 의한 수경재배 인삼 잎의 항산화 및 간 보호 효과)

  • Lee, Ah Reum;Park, Jae Ho
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.101-108
    • /
    • 2015
  • Objectives : Positive effects of Ginseng has great research attentions such as anticancer, anti-diabetic, antiaging, liver, immune function, CNS, etc. In this study, we investigated Hydroponic-cultured Ginseng Folium fermented byBacillus subtilisto establish fermentation conditions for enhancing functionality.Methods : Ginseng Folium were cultivated hydroponic-cultured and were extracted with methanol. We inoculateBacillus subtilisfor fermentation by adding to 0%, 3% and 5% sugar respectively and checked antioxidant activities, total phenolic content and total saponin content in 2 days intervals during 11 days. The antioxidant activities were studied by the 1,1-diphenyl-2-picryl hydrazyl(DPPH) radical, 2, 2'-Azino-bis(3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt(ABTS) radical scavenging assay and Reducing power assay. We analyzed the Total phenol content, crude saponin content and ginsenoside content. Moreever, Hepatoprotective effects by Glutamic oxaloacetic transaminase(GOT) and Glutamic pyruvic transaminase(GPT) in Sprague-Dawley rat.Results : The results of DPPH and ABTS were 66.89% and 96.72%, respectively. The reducing power was resulted in optical density of 0.7312 with 3% sugar after 9 days of fermentation. and the concentration at 200 ㎍/㎖. Total phenol content was 36.92㎎/g with 3% sugar after 9 days of fermentation, in which crude saponin content wasn't changed, and ginsenoside content such as Rg3, Re and Rb was increased. Activities of GOT and GPT concentration were decreased in rat.Conclusions : This study suggests that hydroponic-cultured Ginseng Folium fermented byBacillus subtilisin 9 days showed significant efficacy of hepato-protection as well as antioxidant compared to the others. In addition, it shows not only improved value but also utilized hydroponic-cultured Ginseng Folium by fermentation.

Effect of Conversion Rate of γ-Aminobutyric acid (GABA) by Yogurt Fermentation with Addition of Nanoparticle Winter Mushroom and Hydroponic Ginseng (팽이 및 수경인삼 분말 및 요구르트 발효에 의한 γ-Aminobutyric acid (GABA)의 전환효율 증진)

  • Shin, Pyung-Gyun;Kim, Hee-Cheong;Yoo, Young-Bok;Kong, Won-Sik;Oh, Youn-Lee
    • Journal of Mushroom
    • /
    • v.13 no.4
    • /
    • pp.334-337
    • /
    • 2015
  • ${\gamma}$-Aminobutyric acid (GABA) is basically neurotrasmitter produced by the decarboxylation of L-glutamic acid catalyzed by glutamic acid decarboxylase (GAD), which was known to convert monosodium glutamate (MSG) to GABA. To investigate enhancement of reversion rate of GABA, the yogurt fermentation with addition of nanoparticle winter mushroom and hydroponic ginseng was used. The conversion rate was revealed to nanoparticle winter mushroom and hydroponic ginseng fermenter (88%) > winter mushroom fermenter (52%) > nanoparticle winter mushroom fermenter (44%). The results showed that nanoparticle winter mushroom and hydroponic ginseng supplemented substrates for enhancement of GABA may be used more effectively as one of potential sources of functional foods.

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.55-62
    • /
    • 2024
  • In this paper, we propose a thin-film hydroponic plant cultivator using HMI display and IoT technology. Existing plant cultivators were difficult to manage due to soil-based cultivation, and it was difficult to optimize environmental conditions due to the open cultivation environment. In addition, there are problems with plant cultivation as immediate control is difficult and growth of plants is delayed. To solve this problem, a cultivation environment was established by connecting the MCU and sensors, and the environment information could be checked and quickly controlled by linking with the HMI display. Additionally, a case was applied to minimize changes in environmental information. Implementation of a thin-film hydroponic cultivation system made soil management easier, improved functionality through operation and control, and made it easy to understand environmental information through the display. The effectiveness of rapid growth was confirmed through crop cultivation experiments in existing growers and hydroponic growers. Future research directions will include optimizing growth information by transmitting and storing cultivation environment information and linking and comparing growth information using vision cameras. It is expected that this will enable efficient and stable plant cultivation.

The Estimation of Transpiration Rate of Crops in Hydroponic Culture in the Plastic Greenhouse (열수지 해석에 의한 온실 수경재배 작물의 증산속도 추정에 관한 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.27-34
    • /
    • 1990
  • The main objective of this study was to find the relationship between transpiration rate and environmental factors for crops in hydroponic culture within plastic greenhouse by using the computer model developed from the heat balance around leaves of a crop. A computer model was developed and verified through comparison with the experimental results for lettuce in hydroponic culture in a polyethylene film house. The model may be extensively used for the water management and thermal environment study of crops in protected culture, if the supplemented studies for some crops would be accomplished.

  • PDF

Fate of Nitrogen and Phosphorous in Hydroponic Waste Solution Applied to the Upland Soils (시설하우스 폐양액의 토양 처리에 따른 질소 및 인의 이동)

  • Yang, Jae-E.;Park, Chang-Jin;Yoo, Kyung-Yoal;Kim, Kyung-Hee;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.132-138
    • /
    • 2005
  • Objective of this research was to evaluate the fate of nitrogen and phosphorous in hydroponic waste solution from the plastic film house cultivation applied to the upland soil by column leaching and field experiment. The pH and EC of leachate were decreased by the reaction with the upland soil in the column leaching experiment. The EC and concentrations of $H^+,\;K^+,\;and\;{NH_4}^+$ of leachate were decreased as the column length (soil depth) was increased. But these were increased as the amounts of the hydroponic waste solution were increased field experiment growing red pepper (Capsicum annum L.) to monitor the nutrients movement using ion exchange resin capsule demonstrated that the nutrient concentration of soil solution was increased in the orders of $PO_4-P. Nitrate concentration of resin capsule inserted into the soil was relatively higher than other nutrients $(NH_4-N\;and\;PO_4-P)$ at the 45 cm of soil depth. The overall results demonstrated that the hydroponic waste solution could be recycled as plant nutrients to enhance fertility of soils. But nitrate leaching was a major factor for safe use of the hydroponic waste solution in soil.

Determination of Inorganic Phosphate in Paprika Hydroponic Solution using a Laboratory-made Automated Test Stand with Cobalt-based Electrodes (코발트전극과 자동시험장치를 이용한 파프리카 양액 내 무기인산 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Kwon, Soon-Goo;Roh, Mi-Young;Kang, Chang-Ik;Jung, Ho-Seop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.326-333
    • /
    • 2011
  • The need for rapid on-site monitoring of hydroponic macronutrients has led to the use of ion-selective electrodes, because of their advantages over spectrophotometric methods, including simple methodology, direct measurement of analyte, sensitivity over a wide concentration range, and low cost. Stability and repeatability of response can be a concern when using multiple ion-selective electrodes to measure concentrations in a series of samples because accuracy might be limited by drifts in electrode potential. A computer-based measurement system could improve accuracy and precision because of both consistent control of sample preparation and easy calibration of sensors. Our goal was to investigate the applicability of a cobalt-based electrode used in conjunction with a laboratory-made automated test stand for quantitative determination of ${PO_4}^-$ in hydroponic solution. Six hydroponic solutions were prepared by diluting highly concentrated paprika hydroponicsolution to provide a concentration range of 1 to 300 ppm $PO_4$-P. A calibration curve relating electrode response to phosphate in paprika hydroponic solution titrated to pH 4 with 0.025M KHP was developed based on the Nikolskii-Eisenman equation with a coefficient of determination ($R^2$) of 0.94. The laboratory-made test stand consisting of three cobalt-based electrodes measured phosphate concentrations similar to those obtained with standard laboratory methods (a regression slope of 0.98 with $R^2$ = 0.80). However, the y intercept was relatively high, 30 ppm, probably due to the relatively large amount of variation present among multiple measurements of the same sample. Further studies on the high variation in EMFs obtained with cobalt electrodes during replicate measurements were required for P estimations comparable to those obtained with standard laboratory instruments.

Growth, Productivity, and Quality of Strawberry as Affected by Propagation Method and Cultivation System (번식방법과 재배시스템에 따른 딸기의 생장, 생산성, 품질)

  • Kang, Dong Il;Hu, Jiangtao;Li, Yali;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.326-336
    • /
    • 2020
  • This study was conducted to investigate productivity of strawberry plants as affected by propagation method and cultivation system. Transplants propagated by cutting propagation and pinning propagation were planted and grown for a whole production period in soil and hydroponic cultivation systems. Growth parameters, fruit productivity, and fruit quality were measured during the whole harvest period. The results showed that propagation method and cultivation system had significant effects on vegetative growth of strawberry plants. Total fruit yield per plant and average fruit weight per fruit during the whole harvest period were significantly lower in the plants grown in soil cultivation system. Total unmarketable fruit ratio was significantly greater in soil cultivation system than that in hydroponic cultivation system. Small fruits were the primary unmarketable fruits in soil cultivation system, while malformed fruits were the primary unmarketable fruits in hydroponic cultivation system. The overall high quality of fruit was found in February, and the plants cultivated in hydroponic cultivation system had higher quality of fruit as compared with that in soil cultivation system. It is concluded that cutting propagation is better than pinning propagation, and hydroponic cultivation system is better than soil cultivation system for fruit productivity of strawberry.

Effects of Ebb-and-flow System with Double-tier Bench on Growth and Yield of Hydroponically Grown Gymnocalycium mihanovichii 'I-Hong' (2단 벤치를 활용한 담배수 관수 시스템이 수경재배 비모란선인장 '이홍'의 생장 및 수량에 미치는 영향)

  • Ki Young Park;Jung-Soo Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.132-138
    • /
    • 2023
  • The Gymnocalycium mihanovichii has been an important export item of Korean flower industry for a long time. Although there is a high demand for grafted cactus from overseas, its production for export is limited. In this study, the growth and marketable yield characteristics of Gymnocalycium mihanovichii 'I-Hong' were compared between soil culture and ebb-and-flow hydroponic system with single- or double-tier bench. As a result, hydroponic methods with single-tier bench resulted in higher fresh weight and glove diameter compared to other cultivation methods. In the ebb-and-flow hydroponic system, hydroponic system with double-tier bench of grafted cactus traits has a lower growth rate than other cultivations. However, the hydroponic system with double-tier bench of grafted cactus significantly increased the yield. In conclusion, the yield from hydroponic system with double-tier bench was better than soil cultivation method. Although there were some differences in color depending on the cultivation method, it was considered that there was no difference in appearance of Gymnocalycium mihanovichii 'I-Hong'. Our results suggest the cultivation methods to overcome production constraints, expand their exports, and improve the value-added characteristics of grafted cactus.