DOI QR코드

DOI QR Code

Growth, Productivity, and Quality of Strawberry as Affected by Propagation Method and Cultivation System

번식방법과 재배시스템에 따른 딸기의 생장, 생산성, 품질

  • Kang, Dong Il (Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University) ;
  • Hu, Jiangtao (Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University) ;
  • Li, Yali (Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University)
  • 강동일 (경상대학교 원예학과 대학원) ;
  • 호강도 (경상대학교 원예학과 대학원) ;
  • 리야리 (경상대학교 원예학과 대학원) ;
  • 정병룡 (경상대학교 원예학과)
  • Received : 2020.07.21
  • Accepted : 2020.08.12
  • Published : 2020.10.31

Abstract

This study was conducted to investigate productivity of strawberry plants as affected by propagation method and cultivation system. Transplants propagated by cutting propagation and pinning propagation were planted and grown for a whole production period in soil and hydroponic cultivation systems. Growth parameters, fruit productivity, and fruit quality were measured during the whole harvest period. The results showed that propagation method and cultivation system had significant effects on vegetative growth of strawberry plants. Total fruit yield per plant and average fruit weight per fruit during the whole harvest period were significantly lower in the plants grown in soil cultivation system. Total unmarketable fruit ratio was significantly greater in soil cultivation system than that in hydroponic cultivation system. Small fruits were the primary unmarketable fruits in soil cultivation system, while malformed fruits were the primary unmarketable fruits in hydroponic cultivation system. The overall high quality of fruit was found in February, and the plants cultivated in hydroponic cultivation system had higher quality of fruit as compared with that in soil cultivation system. It is concluded that cutting propagation is better than pinning propagation, and hydroponic cultivation system is better than soil cultivation system for fruit productivity of strawberry.

이 연구는 번식방법과 재배시스템별 딸기 '설향' 품종의 생산성을 조사하기 위하여 수행되었다. 삽목법과 유인법으로 번식된 이식묘를 토경과 수경재배 시스템에서 진주의 딸기 재배농가에서 2018년 9월12일부터 한 작기 동안 재배하였다. 과실 수확은 2018년 12월 20일에 시작하여 작기가 끝날 때까지 4-5일 간격으로 계속하였다. 전 수확기간 동안 생육, 과실 생산성 및 품질을 측정하였다. 번식방법이 크라운 직경, 엽장 및 엽폭에 유의미한 영향을 미쳤다. 재배시스템은 크라운 직경, 엽장, 엽폭, 엽록소 함량 및 엽수에 상당한 영향을 주었다. 전 수확기간 동안 포기 당 총 과실 수량과 과실 당 평균 과중은 토경재배 시스템에서 유의미하게 낮았다. 시장성이 없는 총 과일 비율은 수경재배 보다 토경재배 시스템에서 현저하게 더 높았다. 시장성이 없는 과일 토경에서는 주로 작은 과일인데 인데 반해 수경재배에서는 주로 기형 과일이었다. 전반적인 고품질 과실은 2월에 수확되었고, 수경재배 시스템에서 토경에 비해 과실의 품질이 더 높았다. 삽목번식이 유인번식 보다 더 좋았고, '설향'의 과실 생산성을 높이기 위해서는 수경재배가 토경재배 보다 더 우수하다는 결론을 얻었다.

Keywords

References

  1. Anver, M.A. M.S., D.C. Bandara, and K.R.E. Premathilake. 2005. Comparison of the carbon partitioning and photosynthetic efficiency of lettuce (Lactuca sativa L.) under hydroponics and soil cultivation. Trop. Agr. Res. 17:194-202.
  2. Benke, K. and B. Tomkins. 2017. Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13:13-26.
  3. Carreno, J., A. Martinez, L. Almela, and J.A. Fernandez-Lopez. 1995. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 28:373-377. https://doi.org/10.1016/0963-9969(95)00008-A
  4. Domis, M., A.P. Papadopoulos, and A. Gosselin. 2002. Greenhouse tomato fruit quality. Horticult. Rev. 26:239-349.
  5. Gimenez, G., J.L. Andriolo, D. Janisch, C. Cocco, and M.D. Picio. 2009. Cell size in trays for the production of strawberry plug transplants. Pesqui. Agropecu. Bras. 44:726-729. https://doi.org/10.1590/S0100-204X2009000700012
  6. Hochmuth, G., D. Cantliffe, C. Chandler, C. Stanley, E. Bish, E. Waldo, D. Legard, and J. Duval. 2006. Fruiting responses and economics of containerized and bare-root strawberry transplants established with different irrigation methods. HortTechnology. 16:205-210. https://doi.org/10.21273/HORTTECH.16.2.0205
  7. Hu, J., Y. Li, Y. Liu, D.I. Kang, H. Wei, and B.R. Jeong. 2020. Hydrogen sulfide affects the root development of strawberry during plug transplant production. Agriculture. 10:12. https://doi.org/10.3390/agriculture10010012
  8. Kim, H.M., H.M. Kim, H.W. Jeong, H.R. Lee, B.R. Jeong, N.J. Kang, and S.J. Hwang. 2018. Growth and rooting rate of 'Maehyang' strawberry as affected by irrigation method on cutting propagation in summer season. Protected Hort. Plant Fac. 27:103-110 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.2.103
  9. KOSIS (Korean Statistical Information Service) Agriculture and forestry output and production index. Available online: http://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114_2014_S0002&conn_path=I2 (accessed on 30 January, 2020).
  10. LaMondia, J.A., W.H. Elmer, T.L. Mervosh, and R.S. Cowles. 2002. Integrated management of strawberry pests by rotation and intercropping. Crop Prot. 21:837-846. https://doi.org/10.1016/S0261-2194(02)00050-9
  11. Lee, J.N., E.H. Lee, W.B. Kim, M.R. Lee, S.J. Hong, and Y.R. Yeoung. 2005. Changes in productivity and fruit quality of ever-bearing strawberries during summer culture in highland. Kor. J. Hort. Sci. Technol. 23:159-163 (in Korean).
  12. Lee, K.S., H.C. Kim, H.S. Chae, K.R. Kim, S.J. Lee, and D.S. Lim. 2010. A Study on agricultural safety technology for ergonomic intervention in farm-work. J. Ergon. Soc. Korea. 29:225-239. https://doi.org/10.5143/JESK.2010.29.2.225
  13. Lee, S.Y., H.J. Kim, and J.H. Bae. 2011. Growth, vitamin C, and mineral contents of Sedum sarmentosum in soil and hydroponic cultivation. Kor. J. Hort. Sci. Technol. 29:195-200 (in Korean).
  14. Menzel, C.M., A. Gomez, and L.A. Smith. 2016a. Control of grey mould and stem-end rot in strawberry plants growing in a subtropical environment. Australasian Plant Pathol. 45:489-498. https://doi.org/10.1007/s13313-016-0440-5
  15. Menzel, C.M., L.A. Smith, and J.A. Moisander. 2016b. The productivity of strawberry plants growing under high plastic tunnels in a wet subtropical environment. HortTechnology. 24:334-342. https://doi.org/10.21273/horttech.24.3.334
  16. Munoz, K., C. Buchmann, M. Meyer, M. Schmidt-Heydt, Z. Steinmetz, D. Diehl, S. Thiele-Bruhn, and G.E. Schaumann. 2017. Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching. Appl. Soil Ecol. 113:36-44. https://doi.org/10.1016/j.apsoil.2017.01.014
  17. Na, Y.W., H.J. Jeong, S.Y. Lee, H.G. Choi, S.H. Kim, and I.R. Rho. 2014. Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Hortic. Environ. Biotechnol. 55:280-286. https://doi.org/10.1007/s13580-014-0006-9
  18. Park, G.S. and J.M. Choi. 2015. Medium depths and fixation dates of 'Seolhyang' strawberry runner plantlets in nursery field influence the seedling quality and early growth after transplanting. Kor. J. Hort. Sci. Technol. 33:518-524 (in Korean).
  19. Pastrana, A.M., M.J. Basallote-Ureba, A. Aguado, K. Akdi, and N. Capote. 2016. Biological control of strawberry soilborne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol Mediterr. 55:109-120.
  20. Rouphael, Y., A. Battistelli, E. Rea, G. Colla, S. Moscatello, and S. Proietti. 2004. Yield, water requirement, nutrient uptake and fruit quality of zucchini squash grown in soil and closed soilless culture. J. Hortic. Sci. Biotechnol. 79:423-430. https://doi.org/10.1080/14620316.2004.11511784
  21. Rouphael, Y., M. Cardarelli, E. Rea, A. Battistelli, and G. Colla. 2006. Comparison of the subirrigation and drip irrigation system for greenhouse zucchini squash production using saline and non-saline nutrient solution. Agric. Water Manag. 82:99-117. https://doi.org/10.1016/j.agwat.2005.07.018
  22. Schwarz, M. 1995. Culture and Cultivation. In Soilless culture management Springer-Verlag Berlin Heidelberg, Berlin, Germany, p. 3-6.
  23. Taghavi, T., A. Dale, B. Hughes, and J. Zandstra. 2016. The performance of day neutral strawberries differs between environments in Ontario. Can. J. Plant Sci. 96:662-669.
  24. Treftz, C. and S.T. Omaye. 2015. Comparison between hydroponic and soil systems for growing strawberries in a greenhouse. Int. J. Agr. Ext. 3:195-200.
  25. Vicente, E., P. Varela, L. de Saldamando, and G. Ares. 2014. Evaluation of the sensory characteristics of strawberry cultivars throughout the harvest season using projective mapping. J. Sci. Food Agr. 94:591-599. https://doi.org/10.1002/jsfa.6307
  26. Wang, S.Y. and M.J. Camp. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hortic. 85:183-199. https://doi.org/10.1016/S0304-4238(99)00143-0
  27. Wei, H., C. Liu, and B.R. Jeong. 2020. An optimal combination of the propagation medium and fogging duration enhances the survival, rooting and early growth of strawberry daughter plants. Agronomy. 10:557. https://doi.org/10.3390/agronomy10040557
  28. Wold, A.B. and N. Opstad. 2012. Fruit quality in strawberry (Fragaria x ananassa Duch. cv. Korona) at three times during the season and with two fertilizer strategies. J. Appl. Bot. Food Qual. 81:36-40.
  29. Yoon, H.S., Y.H. Hwang, C.K. An, H.J. Hang, and C.W. Rho. 2004. Growth and fruit yield of strawberry grown in raised bed culture using growing media with lower cost. Kor. J. Hort. Sci. Technol. 22:266-269.
  30. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Am. Soc. Hortic. Sci. 121:1082-1088. https://doi.org/10.21273/JASHS.121.6.1082