• Title/Summary/Keyword: Hydrophobicity

Search Result 759, Processing Time 0.025 seconds

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Changes of Cell Surface Hydrophobicity of a Serratia marcescens with Cultivation Time and Temperatures (배양온도와 시간에 따른 Serratia marcescens 표면의 소수성 성질변화)

  • 이상열;신용철;권헌영;조무제;강은경
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.227-232
    • /
    • 1990
  • S. marcescens cultured at $30^{\circ}C$ with vigorous shaking was shown to produce red-pigment, prodigiosin, in the senescent phase of growth. Also, it showed many hydrophobic characteristrics, which were tested by the adherence to noncharged surfaces of polystyrene dishes, a typical agent for the binding of hydrophobic cells and molecules. However, when the cell was cultured at $37^{\circ}C$, it no longer produced either red pigment or hydrophobic materials. Therefore, the bacteria cultured at $37^{\circ}C$ was completely washed-out from the polystyrene dishes at the copious washing step with tap water, in contrast to the cell cultured at $30^{\circ}C$ which was sticked onto the polystyrene dishes very tightly. The lipid compositions extracted from the S. marcescens cultured at $30^{\circ}C$ or $37^{\circ}C$ were very different from each other; the phospholipids, glycolipids and unidentified lipids were produced from the cell cultured at $30^{\circ}C$, whereas large amounts of serratamolide, amphipathic compound, were produced from the cell cultured at $37^{\circ}C$. The data suggest that the pronounced cell surface hydrophobicity of the S. marcescens is mediated by a combination of several surface factors that were affected by cultivation time and temperatures.

  • PDF

Partition Coefficient of Proteins of Different Surface Hydrophobicity in Poly (ethylene glycol)-Dextran Aqueous Two Phase System (Poly(ethylene glycol)-Dextran 수용액 2상계에서 단백질들의 소수성에 따른 분획계수)

  • Lee, Sam-Pin;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 1987
  • The partition coefficient of the proteins of known effective hydrophobicity was determined in a poly (ethylene glycol)-dextran aqueous two-phase system. The changes in the partition coefficient was also determined when a fraction of PEG-palmitate (PEG-P) was added to the system. The partition coefficient of the proteins increased as the concentrations of PEG and dextran increased at a constant phase volume ration irrespective of the effective hydrophobicity of the proteins. When small amounts of PEG-P were added to the PEG phase, the partition coefficients of BSA and ${\beta}-lactoglobulin$, which had relative hydrophobicity (RI) of 700 and 120, respectively, increased more than ten-fold, whereas ovalbumin whose RI was 5 showed little change. The drastic increases m the partition coefficient were observed by the addition of PEG-P in 2% level to the PEG system. Addition of PEG-P over 5% level resulted in a slight further increase in the partition coefficient of all proteins tested.

  • PDF

Hydrophobicity and Adhesion Evaluation of MWCNT/Teflon-polyurethane Topcoat for Aircraft with Different MWCNT Coating Times (탄소나노튜브 코팅횟수에 따른 항공기용 탄소나노튜브/테프론-폴리우레탄 탑코트의 표면소수성 및 부착력 평가)

  • Lee, Jae-Hyuk;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.80-85
    • /
    • 2022
  • This work presents an experiment study to evaluate the nanoparticle adhesion and surface hydrophobicity characteristics of Teflon-polyurethane top coat depending on the number of multi-wall carbon nanotube (MWCNT) coatings, which is a carbon-based hydrophobic particle. In order to measure the adhesion between the nanoparticles and the top coat, adhesion pull-off test was performed with different MWCNT oxidation times. Static contact angle and roughness measurements were carried out to characterize the surface hydrophobic behavior. Through the roughness evaluation, it was confirmed that the carbon nanotubes were wetted in the Teflon-polyurethane top coat, and the degree carbon nanotube wetting was confirmed through a USB-microscope. As a result, it was found that the larger the degree of wetting, the better the adhesion. From the experimental results, as the hydrophobicity of Teflon-polyurethane increased, the adhesive propertydecreased with the number of coatings. It was possible to improve the adhesive force and determine the number of coatings of carbon nanotubes with optimized hydrophobicity.

Surface Characteristics of Silicon Substrates Coated with Self-assembled Mono-layers (자체조립 단일막으로 코팅된 실리콘 기판의 표면특성)

  • 최성훈;강호종
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Silane modified perfluoropolyethers (SPFPE) was synthesized as a self-assembled mono-layers (SAMs) thin film for micro-electro mechanical system (MEMS). SPFPE was compared to the Perfluoropolyethers (PFPE) as well as octadecyltrichlorosilane (OTS) and perfluorooctyltrichlorosilane (FOTS) with respect to the development of hydrophobicity in the SAMs surface. SPFPE shows less hydrophobicity than those of OTS and FOTS. Thermal annealing of SPFPE SAMs resulted in the enhancement of hydrophobicity as much as those of OTS and FOTS. The SAMs formed from SPFPE were found to be similar as OTS and FOTS SAMs with smooth R$\sub$a/ values of 0.3 nm. However, the flexible chain mobility of SPFPE resulted in 50% reduction as much as the fiction force in OTS.

Surfactant enhanced filtration performances of monochlorophenol isomers through low-pressure membrane

  • Kumar, Yogesh;Brahmbhatt, H.;Trivedi, G.S.;Bhattacharya, A.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.137-145
    • /
    • 2011
  • Membrane processes are major breakthrough for the removal of organic pollutants in water remediation. The separations of solutes depend on nature of the membranes and solutes. The separation performance depends on the nature of the solutes (i.e., molecular volume, polarity, and hydrophobicity) for the same membrane. As 4-chlorophenol is of more dipolemoment compared to 2-chlorophenol, the orientation of the molecule enables it pass through the pores of the membrane, which is of negatively charged and thus separation order follows: 2-chlorophenol > 4-chlorophenol. Hydrophobicity factor also supports the order. Addition of sodium dodecyl sulfate (SDS) to chlorophenol solution shows remarkable increase in separation performance of the membrane. The improvement in separation is 1.8 and 1.5 times for 4- and 2- chlorophenol consecutively in case of 0.0082 M SDS (1cmc = 0.0082 M) in the solution. 4-chlorophenol has better attachment tendency with SDS because of its relatively more hydrophobic nature and thus reflects in performance i.e. the separation performance of 4-chlorophenol with SDS through the membrane is better compared to 2-chlorophenol.

Study on electrical ageing properties of ATV silicone coatings (RTV 실리콘 코팅재의 전기적 열화 특성 연구)

  • Han, Se-Won;Cho, Han-Goo;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.35-39
    • /
    • 2003
  • An ageing characteristics of RTV coating materials by corona discharge have been studied. The recovery of a hydrophobicity of RTV coating materials with the thickness of $300{\mu}m$ was in identical with a bulk silicone materials. The hydrophobicity of RTV coating materials has been almost lost when its were discharged during 40 seconds by corona with 10kV, and recovered after about 45 hours. But the resistivity of RTV coating materials has not been recovered after 45 hours, even though after 80 hours the 95% of initiation resistivity value has been recovered. There was no critical compounds(such as Si and Al) changes on RTV surfaces by the corona discharge treatment until 100 seconds. In the test of arc erosion, it was seen that the coating sample with silicone rubber as a base material have more longer bum-out time than other samples with FRP or glass base.

  • PDF

Analysis of Surface Degradation on Accelerated UV-treated Polymeric Housing Materials for Outdoor Insulator (자외선 가속열화에 따른 옥외용 폴리머 절연재료의 표면열화 분석)

  • Yeon, Bok-Hui;Lee, Sang-Yong;Heo, Chang-Su;Sim, Dae-Seop;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.479-488
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were inverstigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-EDS, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=0, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Fabrication of the Superconducting Flux Flow Transistor Using the ICP Etching Method (ICP 장치를 이용한 초전도 자속 흐름 트랜지스터의 링크 제작)

  • Gang, Hyeong-Gon;Im, Yeon-Ho;Im, Seong-Hun;Choe, Hyo-Sang;Han, Yun-Bong;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.494-499
    • /
    • 2001
  • The effects of accelerated Ultraviolet (UV) radiation on High temperature vulcanized (HTV), Room temperature vulcanized (RTV) silicone rubber and two types of ethylene propylene diene terpolymer (EPDM) used for composite insulator were investigated by hydrophobicity class (HC), surface voltage decay after corona charging, SEM-ES, FTIR and XPS. The contact angle in two kinds of silicone rubber was scarcely change, but EPDM occurred to the loss of hydrophobicity followed by surface cracking and chalking. The surface voltage decay on UV-treated silicone rubber and EPDM showed a different decay trend with UV treatment. EDS and XPS analysis indicated that the oxygen content increased with UV treatment time in all samples. For silicone rubber, the oxidized groups of inorganic silica-like structure increased with UV treatment time. The oxidized carbon of C=O, O=C-O in EPDM increased. These oxidized surface for each material had different electrostatic characteristics, so deposited charges were expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results was discussed.

  • PDF

Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test (Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성)

  • Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.