Surface Characteristics of Silicon Substrates Coated with Self-assembled Mono-layers

자체조립 단일막으로 코팅된 실리콘 기판의 표면특성

  • 최성훈 (기능성고분자 신소재연구센터, 단국대학교 고분자공학과) ;
  • 강호종 (기능성고분자 신소재연구센터, 단국대학교 고분자공학과)
  • Published : 2004.01.01

Abstract

Silane modified perfluoropolyethers (SPFPE) was synthesized as a self-assembled mono-layers (SAMs) thin film for micro-electro mechanical system (MEMS). SPFPE was compared to the Perfluoropolyethers (PFPE) as well as octadecyltrichlorosilane (OTS) and perfluorooctyltrichlorosilane (FOTS) with respect to the development of hydrophobicity in the SAMs surface. SPFPE shows less hydrophobicity than those of OTS and FOTS. Thermal annealing of SPFPE SAMs resulted in the enhancement of hydrophobicity as much as those of OTS and FOTS. The SAMs formed from SPFPE were found to be similar as OTS and FOTS SAMs with smooth R$\sub$a/ values of 0.3 nm. However, the flexible chain mobility of SPFPE resulted in 50% reduction as much as the fiction force in OTS.

미세전자-기계계 (MEMS)의 윤활 막으로 적용되는 자체조립 단일막 (SAMs) 형성을 위하여 실란 변성 퍼플루오로폴리에테르 (SPFPE)를 합성하고 이를 실리콘 표면에 코팅하여, 형성된 SAMs에 의한 표면 특성 변화를 기존의 퍼플루오로폴리에테르 (PFPE), 옥타데실트리클로로실란 (OTS), 그리고 퍼플루오로옥틸트리클로로실란 (FOTS) SAMs와 비교 검토하였다. SPFPE에 의해 형성된 SAMs는 실리콘 표면과의 느린 반응성에 의하여 OTS와 FOTS와 비교하여 상대적으로 낮은 소수성을 가지나 열처리에 의하여 이들과 비슷한 소수성을 보였다. SPFPE에 의하여 형성된 SAMs 표면은 OTS와 FOTS와 유사한 0.3 nm의 표면 거칠기를 가지나 상대적으로 유연한 PFPE 주사슬의 움직임으로 인하여 OTS에 비하여 50% 정도 마찰력이 줄어드는 우수한 마찰 특성을 보였다.

Keywords

References

  1. Handbook of Micro/Nano Technology B.Bhushan
  2. Wear v.200 K.Komvopoulos https://doi.org/10.1016/S0043-1648(96)07328-0
  3. Tribol. Lett v.3 C.H.Mastrangleo https://doi.org/10.1023/A:1019133222401
  4. Thin Solid Film v.381 H.Liu;I.Ahmed;M.Scherge https://doi.org/10.1016/S0040-6090(00)01546-7
  5. J. Electrochem. Soc. v.142 K.Deng;R.J.Collins;M.Mehregany;c.N.Sukenik https://doi.org/10.1149/1.2044164
  6. Wear v.251 K.H.Cha;D.E.Kim https://doi.org/10.1016/S0043-1648(01)00729-3
  7. Langmuir v.11 R.Banga;J.Yarwood;A.M.Morgan;B.Evans https://doi.org/10.1021/la00011a036
  8. J. Appl. Phys. v.91 J.Choi;M.Kawaguchi;T.Kato https://doi.org/10.1063/1.1452690
  9. J. MEMS v.7 U.Srinivasan;M.R.Houston;R.T.Howe;R.Maboudian https://doi.org/10.1109/84.679393
  10. J. Non-Cryst. Solids v.178 H.Schmidt https://doi.org/10.1016/0022-3093(94)90299-2
  11. Langmuir v.9 J.D.Le Grange;J.L.Markham;C.R.Kurkjian https://doi.org/10.1021/la00031a023
  12. Colloid Surface. A v.105 M.L.Hair;C.P.Tripp https://doi.org/10.1016/0927-7757(95)03298-5
  13. Thin Solid Films v.339 S.Singh;D.Y.Sasaki;J.Cearano Ⅲ;A.J.Hurd https://doi.org/10.1016/S0040-6090(98)01404-7
  14. Sensor Actuator A v.91 W.R.Ashurst;C.Yau;C.Carraro;C.Lee;G.J.Kluth;R.T.Howe;R.Maboudian https://doi.org/10.1016/S0924-4247(01)00593-3
  15. Langmuir v.13 M.R.Sung;G.J.Kluth;O.W.Yauw;R.Maboudian https://doi.org/10.1021/la9705928
  16. Polymer(Korea) v.23 S.H.Park;S.W.Chun;D.J.Perettie;F.E.Talke;H.J.Kang
  17. Proc. Instn. Mech. Engrs. v.214 X.Zhao;B.Bhushan https://doi.org/10.1243/0954405001518233