• Title/Summary/Keyword: Hydrophobic silica

Search Result 113, Processing Time 0.034 seconds

Study on the Hydrophobicity and Mechanical Properties of Silica-Based Aerogel by Introducing Organic Benzene (벤젠 유기물 도입에 따른 실리카 기반 에어로겔의 소수성 및 기계적 특성 연구)

  • Qi, Wang;Lee, Jihun;Dhavale, Rushikesh P.;Choi, Haryeong;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.135-141
    • /
    • 2020
  • The silica aerogels with benzene-bridged were designed to have uniform network structure, ordered pore structure, improved mechanical properties and excellent textural properties. Adding organic to enhance the mechanical properties of silica aerogels is a common method, but textural properties of aerogels with organic are reduced due to the organic-inorganic phase separation. In this paper, we use a simple and low-cost method to increase mechanical properties while maintaining textural properties of SiO2 aerogels. Two types of benzene-bridged precursors were prepared to study the effect of the number of hydroxyl band on the textural and mechanical properties. The porous silica aerogel was prepared by a simple, cost effective and pollution-free sol-gel method. This method does not require additional silylating reagents. The benzene-bridged silica aerogel samples prepared had excellent textural properties, high specific surface area (1,326 ㎡/g), porous structure and hydrophobicity (>140°). The mechanical strength of 2T4 is more than 5 times that of pure silica aerogel.

Characteristics of Energy Dissipation in Nano Shock Suspension System Using Silica Gel (세라믹 분말을 이용한 나노 충격 완화 장치의 에너지 소산 효율 특성에 대한 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents an experimental investigation of a reversible colloidal seismic damper, which is statically loaded, The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pare and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices, Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated.

Effect of Cetyltrimethyl Ammonium Bromide on Foam Stability and SiO2Separation for Decontamination Foam Application (거품제염을 위한 실리카 나노입자와 CTAB (Cetyltrimethyl Ammonium Bromide)의 거품안정성 및 분리특성 평가)

  • Choi, Mansoo;Kim, Seung-Eun;Yoon, In-Ho;Jung, Chong-Hun;Choi, Wang-Kyu;Moon, Jei-Kwon;Kim, Seon-Byeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2018
  • As part of planning for waste minimization, decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant. In this study, we synthesized silica particles to improve foam stability by varying synthesis parameters. Cetyltrimethylammonium bromide (CTAB) was found to influence the stability of the decontamination foam. The reason was that higher interaction between $SiO_2$ nanoparticles and surfactant at the air-water interface in aqueous solution is beneficial for foam stability. CTAB can also be used as an additive for the aggregation of silica nanoparticles. In the separation of $SiO_2$ nanoparticles, CTAB plays a critical role in the nanoparticles flocculation because of the charge neutralization and hydrophobic effects of its hydrocarbon tails.

Filler-Elastomer Interactions. 9. Effect of Thermal Treatment on Mechanical Interfacial Characteristics of Silica/Polyurethane Composites (충전제-탄성체 상호작용. 9. 실리카/ 폴리우레탄 복합재료의 기계적 계면특성에 미치는 열처리의 영향)

  • Park, Soo-Jin;Cho, Ki-Sook;Zaborski, M.;Slusarski, L.
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • In this work, the influence of thermal treatment on surface properties of silicas and mechanical interfacial properties of silicas/polyurethane composites was investigated. The surface properties of thermally treated silicas were studied in the context of Fourier Transform-IR (FT-IR), solid-state 29Si NMR spectroscopy, and contact angle. And the mechanical interfacial properties of the silica/polyurethane composites were evaluated by composite tearing energy (GIIIC). As a result, it was found that the thermally treated silica surfaces became hydrophobic in nature, due to the condensation of surface hydroxyls and the formation of siloxane bonds, resulting in increasing the London dispersive component of surface free energy. From which, the increase of the London dispersive component of the silicas led to an improvement of the dispersion of silicas in a polyurethane matrix, finally resulting in improving the tearing energy (GIIIC) of the silicas/polyurethane composites.

Preparation of Polysulfone Composite Ultrafiltration Hollow Fiber Membranes Incorporating Nano-size Fumed Silica with Enhanced Antifouling Properties (나노 크기의 Fumed Silica가 함유된 Polysulfone 한외여과 중공사막 제조 및 내오염성 분석)

  • Kang, Yesol;Lim, Joohwan;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.379-387
    • /
    • 2018
  • This study was conducted to improve the membrane characteristics and performance by increasing hydrophilicity by adding additives to the ultrafiltration polysulfone (PSf) hollow fiber membrane. The mixed matrix membranes (MMMs) were prepared by dispersing 15 nm of fumed silica (FS) in the spinning solution at 0.1, 0.3 and 0.5 wt%. SEM analysis was carried out to confirm the cross-section and surface condition. It was confirmed that mean pore radius of the hollow fiber increased by 4 nm as FS was added. In addition, contact angle measurement was carried out for the hydrophilicity analysis of hollow fiber membranes, and it was confirmed that the hydrophilicity of MMMs were increased by adding of FS. In the case of water permeability, the membrane including FS showed 91~96 LMH and showed 5~11% more increase than PSf membrane. In the antifouling performance test, relative flux reduction ratios of FS mixed hollow fiber membranes were lower than that of PSf membranes, and it was confirmed that increase of hydrophilicity hinders adsorption of hydrophobic BSA on the membrane surface.

Purification and Properties of Biosurfactant from Pseudomonas aeruginosa KK-7 (Pseudomonas aeruginosa가 생산하는 biosurfactant의 분리 및 특성)

  • 김대원;김민주;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.337-345
    • /
    • 1995
  • Biosurfactants produced by Pseudomonas aeroginosa KK-7 were purified and their properties were studied. The bacterial surfactant was seperated into two sorts of biosufactants (Type I, 11) by silica gel column chromatograpgy. On the basis of physiochemical analysis, Type I was found to be mixture of two glycolipids with M.W. 800, and Type II was peptide with M.W. 1300. The Type 11 biosurfactant was compose of glutamic acid, proline, glycine, leucine, histidine. The crude extract was used to dertermine some properties as a surfactant. The biosurfactant had the properties as stronger emulsification agent and a stronger stabilizing agent emulsion than any other surfactants tested.

  • PDF

Study on UV degradation in Polymeric Insulating Materials for Use in Outdoor Insulators by Corona-Charging (코로나 대전을 통한 옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Youn, Bok-Hee;An, Jong-Sik;Lee, Sang-Yong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.106-109
    • /
    • 2001
  • In this paper, we have investigated the degradation of shed materials of outdoor insulators by UV-radiation by using corona-charging and XPS analysis. The accumulated charges on polymeric surface having intrinsic hydrophobic property have a negative impact on retaining its hydrophobicity. Therefore, shorter decay times of surface charges are preferred. The surface voltage decay on UV-treated silicone rubber and EPDM show a different decay trend with UV treated time. From the XPS analysis, the oxidized groups of silica-like structure in silicone rubber increase with UV treatment time. For EPDM, the oxidized carbon groups of C=O, O=C-O increase as elapse of UV radiation time. These oxidized surface for each material have different electrostatic characteristics, so deposited charges may be expected to have different impacts on their surface hydrophobicity. The degradation mechanism based on our results is discussed.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Dependence of Surface Morphology of Transparent Hydrophobic Anti-Reflective Coating (투명 발수 반사방지 코팅의 표면 형상 의존성)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.771-776
    • /
    • 2017
  • The cover glass of mobile displays and photovoltaic cells needs a functional coating, such as an anti-reflection and self-cleaning coating. Numerous studies have been conducted on the engineering application of biomimetic functional surfaces, such as moth eye and lotus leaf Anti-reflection coantings of silica nanoparticles could enhance the light transmittance. $TiO_2$ photocatalyst coatings have been applied to self-cleaning functional films. In this study, transparent hydrophobic anti-reflective coatings consisting of thin layers of $SiO_2/TiO_2$ nanoparticles were fabricated on a slide glass substrate by the sol-gel process and dip-coating process. The dependence of the surface morphology of the functional coatings was investigated by the atomic force microscopy (AFM), contact angle measurement, and UV-visible spectroscopy. It was found that the coating of $TiO_2$ nanoparticles exhibited a high average transmittance comparable to that of the bare slide glass substrate in the visible light range. The bi-layered functional coating of 7 nm $SiO_2$/7nm $TiO_2$ nanoparticles exhibits a transparent hydrophobic surface with a contact angle of $110^{\circ}$ and an improvement of the average transmittance of 2.3% compared to the bare slide glass substrate in the visible light range.