Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2018.16.2.173

Effect of Cetyltrimethyl Ammonium Bromide on Foam Stability and SiO2Separation for Decontamination Foam Application  

Choi, Mansoo (Korea Atomic Energy Research Institute)
Kim, Seung-Eun (Korea Atomic Energy Research Institute)
Yoon, In-Ho (Korea Atomic Energy Research Institute)
Jung, Chong-Hun (Korea Atomic Energy Research Institute)
Choi, Wang-Kyu (Korea Atomic Energy Research Institute)
Moon, Jei-Kwon (Korea Atomic Energy Research Institute)
Kim, Seon-Byeong (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.16, no.2, 2018 , pp. 173-182 More about this Journal
Abstract
As part of planning for waste minimization, decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant. In this study, we synthesized silica particles to improve foam stability by varying synthesis parameters. Cetyltrimethylammonium bromide (CTAB) was found to influence the stability of the decontamination foam. The reason was that higher interaction between $SiO_2$ nanoparticles and surfactant at the air-water interface in aqueous solution is beneficial for foam stability. CTAB can also be used as an additive for the aggregation of silica nanoparticles. In the separation of $SiO_2$ nanoparticles, CTAB plays a critical role in the nanoparticles flocculation because of the charge neutralization and hydrophobic effects of its hydrocarbon tails.
Keywords
Decontamination foam; Foam stability; $SiO_2$; Cetyltrimethylammonium bromide; Silica separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.P. Binks, Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002).   DOI
2 E. Santini, J. Kragel, F. Ravera, L. Liggieri, and R. Miller, Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using Langmuir trough technique, Colloids Surf. A; Physicochem. Eng. Aspects, 382, 186-191 (2011).   DOI
3 A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, and R. G.Rubio, Wettability of silica nanoparticle-surfactant nanocomposite interfacial layers, Soft Matter, 8, 837-843 (2012).   DOI
4 X.K. Ma, N.H. Lee, H.J. Oh, J.W. Kim, C.K. Rhee, K.S. Park, and S.J. Kim, Surface modification and characterization of highly dispersed silica-naoparticles by a cationic surfactant, Colloids Surf. A; Physicochem. Eng. Aspects, 358, 172-176 (2010).   DOI
5 B. Fouconnier, A. Roman-Guerrero, and E. J. Vernon-Carter, Effect of [CTAB]-[$SiO_2$] ratio on the formation and stability of hexadecane/water emulsions in the presence NaCl, Colloids Surf. A; Physicochem. Eng. Aspects, 400, 10-17 (2012).   DOI
6 Y. Liu, M. Tourbin, S. Lachaize, and P. Guiraud, Silica nanoparticles separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB), Chemosphere, 92, 681-687 (2013).   DOI
7 C. Y. Hu, S. L. Lo, C. M. Li, and W. H. Kuan, Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process by surfactant, J. Hazard Mater., A120, 15-20 (2005).
8 C.Y. Lien and J.C. Liu, Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation. J. Environ. Eng., 132, 51-57 (2006).   DOI
9 W. Wang, B. Gu, L. Liang, and W. A. Hamilton, Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticles-water interface, J. Phys. Chem. B, 108, 17477-17483 (2004).   DOI
10 Q. Lan, F. Yang, S. Zhang, S. Liu, J. Xu, and D. Sun, Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions, Colloid Surf. A; Physicochem. Eng. Aspects, 302, 126-135 (2007).   DOI
11 S. Zhang, Q. Lan, Q. Liu, J. Xu, and D. Sun, Aqueous foams stabilized by Laponite and CTAB, Colloid Surf. A; Physicochem. Eng. Aspects, 317, 406-413 (2008).   DOI
12 A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, and R. G. Rubio, Wettability of silica nanoparticle-surfactanct nanocomposite interfacial layers, Soft Matter., 8, 837-843 (2012).   DOI
13 C. Y. Lien and J. C. Liu, Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation, J. Environ. Engineering, 132, 51-57 (2006).   DOI
14 Y. Liu, M. Tourbin, S. Lachaize, and P. Guiraud, Silica nanoparticles separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB), Chemosphere, 92, 681-687 (2013).   DOI
15 E. Chomski, O. Dag, A. Kuperman, N. Coombs, and G. A. Ozin, New forms of luminescent silicon: silicon-silica composite mesostructures, Chemical vapor deposition, 2, 8-13 (1996).   DOI
16 S.H. Wu, C.Y. Mou, and H.P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 42, 3862-3875 (2013).   DOI
17 L. Nunez and L. Kaminski, Foam and gel methods for the decontamination of metallic surface, US patent, 7, 166,758 (2007).
18 I.H. Yoon, C.H. Jung, S.B. Yoon, S.Y. Park, J.K. Moon, and W.K. Choi, "Effect of silica nanoparticles on the stability of decontamination foam and their application for oxide dissolution of cored specimens", Ann. Nucl. Energy, 73, 168-174 (2014).   DOI
19 R. Hoppe, A. Ortlam, J. Rathousky, G. Schulz-Ekloff, and A. Zukal, Syhtnesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B, Microporous Mater. 8, 267-273 (1997).   DOI