• Title/Summary/Keyword: Hydrophobic silica

Search Result 113, Processing Time 0.025 seconds

Effect of Water Volume and Relaxation Time in the Design of Nano Shock Absorbing Damper Using Silica Particle (실리카 분말을 이용한 나노 충격완화 장치의 설계에서 작동 유체 영향과 복원 시간에 대한 연구)

  • 문병영;김병수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.286-292
    • /
    • 2003
  • In this study, new shock absorbing system was proposed using silica gel particles according to the nano-technology. For the design and real application of the proposed damper, an experimental investigations are carried out using colloidal damper, which is statically loaded. The porous matrix is composed from silica gel(labyrinth architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis were described. Iufluence of the water volume and particle diameters upon the reversible colloidal damper hysteresis was investigated. Also, influence of the relaxation time on the hysteresis of the damper was investigated. As a result, the proposed new shock absorbing damper is proved as an effective one, which can be replaced for the conventional hydraulic damper.

A Study on the Fundamental Mechanical Properties of Hydrophobic Cementeous Mortar using Silane Admixtures (실란계 혼화제를 활용한 소수성 시멘트 모르타르의 기초물성 연구)

  • Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • In this study, emulsion type hydrophobic admixture was prepared by mixing polyvinyl alcohol surfactant, polymethyl hydro-siloxane and meta kaolin, and the compressive strength and mechanical properties such as permeability and contact angle test of the mortar were evaluated. The developed hydrophobic admixture showed no decrease in strength and the mortar specimen with magnesium oxide developed the early strength. In the case of permeability, total seepage was significantly decreased when the hydrophobic admixture was directly mixed with the mortar, but the effect of meta kaolin contained in hydrophobic admixture was not significant. The surface of specimens coated with hydrophobic admixture shows that the contact angle on the surface was highly increased compared with reference mortar specimen. Further researches to obtain the optimum mix proportion of the PVA fiber, nano-silica and meta kaolin for producing the super-hydrophobic surface are required.

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica

  • Louis, Hamenu;Lee, Young-Gi;Kim, Kwang Man;Cho, Won Il;Ko, Jang Myoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1795-1799
    • /
    • 2013
  • The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

A Study on Mechanical Properties of Composite of Silica Aerogel and pulps (Silica Aerogel과 펄프 복합체의 기계적 특성에 관한 연구)

  • Yoo, Jeong-Kun;Kim, Hak-Hee;Kim, Hak-Soo;Choi, Chang-Ha
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.335-339
    • /
    • 2014
  • The studies on the characteristics of composite of silica aerogel and pulps were carried out. The composite was manufactured by mixing the paste of silica aerogel and pulps and analyzed by SEM. Using the impedence tube, the sound absorption measurement was investigated. The maximum value of sound absorption coefficient of this composite was obtained in the range of 900 Hz. It was found that the composite of silica aerogel and pulps could be a new sound absorbent because of high absorption capacity and durability which was due to hydrophobic effect on the surface of the composite.

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica (과량 실리카 도입을 통한 고분자 전해질막 표면 개질)

  • Park, Chi Hoon;Kim, Ho Sang;Lee, Young Moo
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.

Changing the Surface-Liquid Crystal Interaction through the Adsorption of Silica Nanoparticles

  • Finotello, Daniele;Jin, Tao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.847-848
    • /
    • 2004
  • We studied a low density 8CB liquid crystal-hydrophobic aerosil dispersions imbedded in submicron-size cylindrical pores. The nanosize spherical aerosil particles are adsorbed at the pore wall and hinder the planar anchoring. The adsorption is temperature dependent, and an axial to radial molecular configuration transition occurs within the cylindrical pores.

  • PDF

Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process (유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조)

  • Hwang, Seung-Hee;Kim, Hyo-Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.143-155
    • /
    • 2020
  • Hydrophobic Organic-Inorganic (O-I) hybrid materials prepared by sol-gel process have been widely used at functional coating fields such as coatings for anti-corrosion, anti-icing, self-cleaning, anti-reflection. The key point for fabricating hydrophobic surface is to optimize the surface energy and roughness of the coating films. There are typical processes to control the surface energy and roughness which are 'In situ fabricating', 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating'. In this study, particle-binder process was used for in-situ fabrication of hydrophobic coating films. Various O-I hybrid compounds prepared using several kinds of alkoxysilane compounds were used as a binder for silica nanoparticles at particle-binder process. To study effect of fluorine content and weight ratio of particle : binder on the hydrophobicity and surface morphology, Hydrophobic coating films were prepared onto glass substrate at various content of fluorine content of O-I hybrid binder and weight ratio of particle : binder. The coating films prepared using O-I hybrid binder (GPTi-HF10) having 10 wt% of fluorine content showed the highes water contact angle (107.52±1.6°). The coating films prepared at 1:3 weight ratio of GPTi-HF10 : silica nanoparticle exhibited the highest water contact angle (130.84±1.99°).

Synthesis and Characterization of Zeolite Composite Membranes (I):Synthesis of ZSM-5 Type Zeolites (제올라이트 복합 분리막의 합성 및 특성화(I): ZSM-5계 제올라이트의 합성)

  • 현상훈;김준학;송재권
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.1064-1072
    • /
    • 1996
  • The synthetic conditions and characteristics of ZSM-5 type zeolites (ZSM-5/silicalite) for the preparation of the zeolite composite membranes for gas separation were investigated. ZSM-5 zeolites could be synthesized by the hydrothermal treatment of the mixture of colloidal silica sol aluminum nitrate sodium hydroxide and TPABr at a temperature range of 150-17$0^{\circ}C$ in the autoclave. Silicalties were done from the solution of water glass water and TPABr. Their crystalline structures transformed from orthorhombic to monoclinic from and their pore structures of three-dimensional channels were opened as TPABr filling channels was burned off at the calcination temperature of 50$0^{\circ}C$. The specific surface area of the calcined zeolite was about 360 m3/g and its surface property was hydrophobic. Crystal sizes of ZSM-5 and silicalite were 0.5-1.0${\mu}{\textrm}{m}$ and 8-10${\mu}{\textrm}{m}$ respectively having no change due to the calcination. In particular the shape and the size of the ZSM-5 type zeolite were sensitively varied with silica sources and concentrations of reaction solutions/sols.

  • PDF