Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.6.1795

Suppression of Aluminum Corrosion in Lithium Bis(trifluoromethanesulfonyl)imide-based Electrolytes by the Addition of Fumed Silica  

Louis, Hamenu (Department of Applied Chemistry and Biotechnology, Hanbat National University)
Lee, Young-Gi (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Kim, Kwang Man (Research Section of Power Control Devices, Electronics and Telecommunications Research Institute (ETRI))
Cho, Won Il (Energy Storage Research Center, Korea Institute of Science and Technology)
Ko, Jang Myoun (Department of Applied Chemistry and Biotechnology, Hanbat National University)
Publication Information
Abstract
The corrosion property of aluminum by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is investigated in liquid and gel electrolytes consisting of ethylene carbonate/propylene carbonate/ethylmethyl carbonate/diethyl carbonate (20:5:55:20, vol %) with vinylene carbonate (2 wt %) and fluoroethylene carbonate (5 wt %) using conductivity measurement, cyclic voltammetry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. All corrosion behaviors are attenuated remarkably by using three gel electrolytes containing 3 wt % of hydrophilic and hydrophobic fumed silica. The addition of silica particles contributes to the increase in the ionic conductivity of the electrolyte, indicating temporarily formed physical crosslinking among the silica particles to produce a gel state. Cyclic voltammetry also gives lower anodic current responses at higher potentials for repeating cycles, confirming further corrosion attenuation or electrochemical stability. In addition, the degree of corrosion attenuation can be affected mainly by the electrolytic constituents, not by the hydrophilicity or hydrophobicity of silica particles.
Keywords
Aluminum corrosion; LiTFSI-based electrolytes; Fumed silica; Gel electrolytes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193.   DOI   ScienceOn
2 Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. J. Power Sources 2003, 119-121, 784.   DOI   ScienceOn
3 Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. J. Power Sources 1997, 68, 320.   DOI   ScienceOn
4 Abouimrane, A.; Ding, J.; Davison, I. J. J. Power Sources 2009, 189, 693.   DOI   ScienceOn
5 Chen, Z.; Lu, W. Q.; Liu, J.; Amine, K. Electrochim. Acta 2006, 51, 3322.   DOI   ScienceOn
6 Peng, C.; Yang, L.; Zhang, Z.; Tachibana, K.; Yang, Y. J. Power Sources 2007, 173, 510.   DOI   ScienceOn
7 Han, H.-B.; Zhou, S.-S.; Zhang, D.-J.; Feng, S.-W.; Li, L.-F.; Liu, K.; Feng, W.-F.; Nie, J.; Huang, X.-J.; Armand, M.; Zhou, Z.-B. J. Power Sources 2011, 196, 3623.   DOI   ScienceOn
8 Garcia, B.; Armand, M. J. Power Sources 2004, 132, 206.   DOI   ScienceOn
9 Angell, C. A.; Xu, W.; Yoshizawa, M.; Hayashi, A.; Belieres, J.-P.; Lucas, P.; Videa, M.; Ohno, H. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: 2005; pp 5-23.
10 Wang, X.; Yasukawa, E.; Mori, S. Electrochim. Acta 2000, 45, 2677.   DOI   ScienceOn
11 Nadherna, M.; Dominko, R.; Hanzel, D.; Reiter, J.; Gaberscek, M. J. Electrochem. Soc. 2009, 156, A619.   DOI   ScienceOn
12 Mun, J.; Yim, T.; Choi, C. Y.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Electrochem. Solid-State Lett. 2010, 13, A109.   DOI   ScienceOn
13 Cho, E.; Mun, J.; Chae, O. B.; Kwon, O. M.; Kim, H.-T.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Electrochem. Commun. 2012, 22, 1.   DOI   ScienceOn
14 Kühnel, R.-S.; Lubke, M.; Winter, M.; Passerini, S.; Balducci, A. J. Power Sources 2012, 214, 178.   DOI   ScienceOn
15 Bruce, P. G. Solid State Ionics 2008, 179, 752.   DOI   ScienceOn
16 Li, Y.; Zhang, X.-W.; Khan, S. A.; Fedkiw, P. S. Electrochem. Solid-State Lett. 2004, 7, A228.   DOI   ScienceOn
17 Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Electrochim. Acta 2002, 47, 2787.   DOI   ScienceOn
18 Zhang, S. S.; Jow, T. R. J. Power Sources 2002, 109, 458.   DOI   ScienceOn
19 Song, S.-W.; Richardson, T. J.; Zhuang, G. V.; Devine, T. M.; Evans, J. W. Electrochim. Acta 2004, 49, 1483.   DOI   ScienceOn
20 Li, Y.; Fedkiw, P. S. Electrochim. Acta 2007, 52, 2471.   DOI   ScienceOn
21 Candan, S. Mater. Lett. 2004, 58, 3601.   DOI   ScienceOn
22 http://www.aerosil.com/product/aerosil/en/products.
23 Roberge, P. R. Handbook of Corrosion Engineering; McGraw-Hill, 2000.
24 Li, Y.; Fedkiw, P. S.; Khan, S. A. Electrochim. Acta 2002, 47, 3853.   DOI   ScienceOn
25 Zhang, X.-W.; Li, Y.; Khan, S. A.; Fedkiw, P. S. J. Electrochem. Soc. 2004, 151, A1257.   DOI   ScienceOn