• Title/Summary/Keyword: Hydrophobic filtration

Search Result 77, Processing Time 0.021 seconds

Purification and Characterization of Acidic Chitinases from Gizzards of Broiler (Gallus gallus L.)

  • Han, Beom-Ku;Moon, Jong-Kook;Ryu, Yeon-Woo;Park, Yun-Hee;Jo, Do-Hyun
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.326-331
    • /
    • 2000
  • Acidic chitinases from the gizzards of a broiler were purified to homogeneity, using precipitation with $(NH_{4})_{2}SO_{4}$, ion exchanger chromatography, gel filtration, chromatofocusing and hydrophobic interaction chromatography. The enzymes, GAC1 and GAC2, were purified 180- and 194- folds with a recovery of 4.9% and 2.7%, respectively. The molecular mass of GAC1 and GAC2 were 48.2 kDa and 57.8 kDa, respectively. Chromatofocusing resulted in a pI of 3.1 for both enzymes. The purified enzymes were endochitinases that were devoid of ${\beta}-N-acetylglucosaminidase$ and lysozyme activity. Kinetic studies using $[^3H]chitin$ indicate that GAC1 has a $K_m$ and $V_{max}$ of 1.97 mg/ml and 185 mg/mg protein/h, respectively. The GAC2 has a $K_m$ and $V_{max}$ of 0.42 mg/ml and 92.3 mg/mg protein/h, respectively at optimal pH and temperature (pH 5.0 and $60^{\circ}C$). When the pentamer and hexamer of N-acetylglucosamine (GlcNAc) were used as a substrate, the major product by GAC1 was the dimer of GlcNAc with a differential accumulation of the monomer and trimer, depending upon the substrate. However, the GAC2 produced the dimer and trimer in an equal quantity, regardless of the substrate used. The first 9 $NH_2-terminal$ amino acid residues of the purified gizzard chitinase GAC1 and GAC2 shared a 100% homology. The first 25 $NH_2-terminal$ amino acid residues of GAC1 also shared 55-60% homology with animal chitinases and some animal proteins, such as whey protein and oviduct-specific proteins. However, little homology was found with either microbial and plant chitinases, or egg white lysozyme.

  • PDF

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.

A Study on the Treatment of Pickled Radish Wastewater Using Surface-modified Membrane (표면개질 분리막을 이용한 단무지폐수 처리에 관한 연구)

  • Seon, Yong-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.64-78
    • /
    • 2011
  • Surface of hydrophobic polyethylene membrane was modified to become hydrophilic by ion beam irradiation. Submerged membrane filtration reactors contained pristine membrane or surface-modified membrane and the influent to reactors was pickled radish wastewater. The objectives of this study was to investigate the variation of flux and pressure and the characteristics of pollutant removal such as organics, suspended solids and nutrients with time. The result of experiments using intermittent pristine membrane showed the occurrence of severe fouling by increasing permeate pressure rapidly in case of pickled radish wastewater but in synthetic wastewater, this phenomenon was not occurred. In experiments of variation flux after chemical cleaning and water cleaning in pristine membrane, chemical cleaning must be necessary for renewals of pollutant membrane. Performance of intermittent operation is higher than that of continuous operation. Reaching fouling time in the case of surface-modified membrane is 6 times as long as pristine membrane. According this reason, replacement expense of surface-modified membrane could be 1/6 of that of pristine membrane. Effluent from this process was relatively good water quality and performance in the removal efficiency of SS, nitrogen and phosphorus was particularly higher.

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin (𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가)

  • Shin, Sung Ju;Lee, Jong Sung;Lee, Jeong Gil;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.434-442
    • /
    • 2021
  • Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.