Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.5.683

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus  

Kim, Eun-Ju (Department of Chemical Education, College of Education, Daegu University)
Ahn, Jong-Seog (Chemical Biology Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kang, Dae-Ook (Department of Biochemistry and Health Science, College of Natural Sciences, Changwon National University)
Publication Information
Journal of Life Science / v.20, no.5, 2010 , pp. 683-690 More about this Journal
Abstract
The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.
Keywords
Extracellular glucoamylase; purification; Saccharomyces diastaticus; secretion; sporulation-specific glucoamylase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamashita, I., K. Suzuki, and S. Fukui. 1985. Nucleotide sequence of the extracellular glucoamylase gene STA1 in the yeast Saccharomyces diastaticus. J. Bacteriol. 161, 567-573.
2 Yamashita, I., K. Suzuki, and S. Fukui. 1986. Proteolytic processing of glucoamylase in yeast Saccharomyces diastaticus. Agri. Biol. Chem. 50, 475-482.   DOI
3 Yamashita, I., M. Nakamura, and S. Fukui. 1987. Gene fusion is a possible mechanism underlying the evolution of STA1. J. Bacteriol. 169, 2142-2149.
4 Yamashita, I., T. Hatano, and S. Fukui. 1984. Subunit structure of glucoamylase of Saccharomyces diastaticus. Agri. Biol. Chem. 48, 1611-1616.   DOI
5 Yamashita, I., T. Maemura, T. Hatano, and S. Fukui. 1985. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast Saccharomyces diastaticus. J. Bacteriol. 161, 574-582.
6 Tamaki, H. 1978. Genetic studies of ability to ferment starch in Saccharomyces:gene polymorphism. Mol. Gen. Genet. 164, 205-209.   DOI
7 Tarentino, A. L. and F. Maley. 1974. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J. Biol. Chem. 249, 811-817.
8 Modena, D., M. Vanoni, S. Englard, and J. Marmur. 1986. Biochemical and immunological characterization of the STA2-encoded extracellular glucoamylase from Saccharomyces diastaticus. Archiv. Biochem. Biophys. 248, 138-150.   DOI
9 Ono, S., S. Tanpa, I, Yamazaki, T. Yoshimura, T. Matsumoto, I. Yamaura, T, Kato, I. Yamashita, and C. Shimasaki. 1996. Comparison of thermal and guanidine hydrochloride denaturarion behaviors of glucoamylase from the STA1 gene of Saccharomyces cerevisiae var. diastaticus. Biosci. Biotechnol. Biochem. 60, 1543-1545.   DOI
10 Pugh, T. A., J. C. Shah, P. T. Magee, and M. J. Clancy. 1989. Characterization and localization of the sporulation-specific glucoamylase of Saccharomyces cerevisiae. Biochim. Biophys. Acta. 994, 200-209.   DOI   ScienceOn
11 Sauer. J., B. W. Sigurskjold, U. Christensen, T. P. Frandsen, E. Miragorodskaya, M. Harrison, P. Roepstorff, and B. Svensson. 2000. Glucoamylase: stucture/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275-293.   DOI   ScienceOn
12 Kang, D. O., I. K. Hwang, W. K. Oh, H. S. Lee, S. C. Ahn, B. Y. Kim, T. I. Mheen, and J. S. Ahn. 1999. Molecular cloning and analysis of sporulation specific glucoamylase (SGA) gene of Saccharomyces diastaticus. The Journal of Microbiology 37, 35-40.
13 Kleinman, M. J., A. E. Wilkinson, I. P. Wright, I. H. Evans, and E. A. Bevan. 1988. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem. J. 249, 163-170.
14 Kumar, P. and T. Satyanarayana. 2009. Microbial glucoamylase: characteristics and application. Critical Reviews in Biotechnology 29, 225-255.   DOI
15 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.   DOI
16 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
17 James, J. A., B. Jean-luc, and L. H. Byong. 1997. Purification of Glucoamylase from Lactobacillus amylovorus ATCC 33621. Current Microbiology 34, 186-191.   DOI
18 Colonna, W. J. and P. T. Magee. 1978. Glycogenolytic enzymes in sporulating yeast. J. Bacteriol. 134, 844-853.
19 Da Silva, T. M., A. Maller, A. R. de Lima Damasio, M. Michelin, R. J. Ward, I. Y. Hirata, and M. L. de polizeli. 2009. Properties of a purified thermostable glucoamylase from Aspergillus niveus. J. Ind. Microbiol. Biotechnol. 36, 1439-1446.   DOI   ScienceOn
20 Feng, B., W. Hu, B. Ma, Y. Wang, H. Huang, S. Wang, and X. Qian. 2007. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Appl. Microbiol. Biotechnol. 76, 1329-1338.   DOI