• Title/Summary/Keyword: Hydrophilic silica

Search Result 62, Processing Time 0.031 seconds

A Study on the Fluorescence Characteristics of Dye-doped Silica Nanoparticles for Integrated Bio Imaging (융합 바이오 이미징을 위한 염료 도핑 된 실리카 나노입자의 형광 특성에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 2018
  • The functional nanomaterials of fluorescent dye-doped silica nanoparticles(NPs) are applied to bio applications such as bio-labeling of DNA micro-array, and bio-imaging. Organic dye-doped fluorescent silica NPs exhibit excellent bio-compatibility, non-toxic, and highly hydrophilic properties. In this study, organic fluorescent dyes were dissolved in ethanol, and deionized(DI) water. Organic fluorescent dyes were physically adsorbed to silica NPs and chemically doped to silica NPs. The fluorescence characteristics(FLC) was investigated by UV lamp irradiation of 365 nm wavelength. As results, the FLC of dye-doped silica NPs exhibits better than dye-adsorbed silica NPs and the FLC was improved with the increase of concentration of doped-dyes. The fluorescent organic dyes were well dissolved in ethanol than DI water. The photostability of dye-doped silica NPs was superior than pure fluorescent organic dye. The FLC of optimized dye-doped silica NPs would be applied to agent of non-invasive fluorescence bio-imaging in live cell and in vivo.

An Application of Electrostatic Repulsion Hydrophilic Interaction Chromatography in Phospho- and Glycoproteome Profiling of Epicardial Adipose Tissue in Obesity Mouse

  • Tran, Trang Huyen;Hwang, In-Jae;Park, Jong-Moon;Kim, Jae-Bum;Lee, Hoo-Keun
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.39-42
    • /
    • 2012
  • Phosphorylation and glycosylation are two of the most important and widespread post-translational modifications (PTMs) in an organism. Proteomics analysis of the PTMs has been challenged by low stoichiometry of the modified proteins and suppression effects by high abundance proteins, typically no-functional house-keeping proteins. In this study, a novel method was applied for not only isolating PTM peptides from intact peptides but also concurrently characterizing of glyco- and phosphoproteome using electrostatic repulsion hydrophilic interaction chromatography (ERLIC) packed with silica coated by crosslinked polyethyleneimine. For 2 mg tryptic digest of mouse proteome of epicardial adipose tissue with fat diet, 802 N-glycosylated peptides of 316 glycoproteins and 159 phosphorylated peptides of 75 phosphoproteins were identified using HPLC chip/quadrupole time-of-flight (Q-OF) tandem mass spectrometer.

Evaluation of interaction between organic solutes and a membrane polymer by an inverse HPLC method

  • Kiso, Yoshiaki;Hosogi, Katsuya;Kamimoto, Yuki;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-182
    • /
    • 2014
  • Organic compounds are adsorbed on RO/NF membranes, and the adsorption may influence the rejection of organic compounds by the membranes. Because almost RO/NF membranes are composite membranes, the results obtained by adsorption experiment with using membrane pieces are unable to avoid the influence by the support membrane. In this work, the interaction between membrane polymer and organic solutes was examined by an inverse HPLC methodology. Poly (m-phenylenetrimesoylate), the constituent of skin layer of RO/NF membranes, was coated on silica gel particles and used as a stationary phase for HPLC. When water was used as a mobile phase, almost hydrophilic aliphatic compounds were not effectively adsorbed on the stationary phase, although hydrophobic compounds were slightly adsorbed. The results indicated that the hydrophilic aliphatic compounds are useful probe solutes to examine the molecular sieving effect of a membrane. When water was used as a mobile phase, the aromatic compounds were strongly retained, and therefore $CH_3CN/H_2O$ (30/70) was used as a mobile phase. It was revealed that the adsorption of aromatic compounds was controlled by stacking between solute and polymer and was hindered by non-planar structure and substituents.

Studies on Pore Characteristics of Several Adsorbents (담배용 흡착제들의 동공 특성에 관한 연구)

  • Rhim, Kwang-Soo;Chung, Yong-Soon;Lee, Young-Taek
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

Influence of Silica Content in Crosslinked PVA/PSSA_MA/Silica Hybrid Membrane for Direct Methanol Fuel Cell (DMFC)

  • Kim, Dae-Sik;Guiver, Michael D.;Seo, Mu-Young;Cho, Hyun-Il;Kim, Dae-Hoon;Rhim, Ji-Won;Moon, Go-Young;Nam, Sang-Yong
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.412-417
    • /
    • 2007
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at different temperatures using poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) (PVA:PSSA_MA = 1:9). The hybrid mem-branes were prepared by varying the TEOS content between 5 and 30 wt%. The PSSA_MA was used both as a crosslinking agent and the hydrophilic group donor ($-SO_3H$ and/or-COOH). The proton conductivity increased with up to 20 wt% TEOS, but decreased above this level, although the water content decreased with increasing TEOS content. This result suggests that the silica doped into the membrane improved the formation of proton-conduction pathways due to the absorption of molecular water. The PVA/PSSA_MA/Silica containing TEOS 20% showed both high proton conductivity (0.026 S/cm at $90^{\circ}C$) and low methanol permeability ($5.55{\times}10^{-7}cm^2/s$).

Synthesis of Silica Nanoparticles Having the Controlled Size and their Application for the Preparation of Polymeric Composites (크기가 제어된 실리카 나노입자 합성과 제조된 입자의 고분자계 복합재 응용)

  • Kim, Jong-Woung;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.75-79
    • /
    • 2006
  • Silica nanoparticles for polymeric dental restorative composites were prepared by Stober method, and then the effects of surface treatment of silica particles with Lmethacrylofpropyltrimethofsilane $(\gamma-MPS)$ on the dispersity of the silica particles in the organic matrix was investigated. Particles having various average size were prepared by using controlled amounts of tetraethylorthosilicate(TEOS), water, and catalyst and by changing solvent used for reaction. The site of particles prepared by using methanol as solvent was smaller than that prepared by using ethanol as solvent. In addition, the size of particles was increased by decreasing amounts of water and by increasing amounts of TEOS and catalyst. Hydrophobic silica nanoparticles was prepared by reacting hydrophilic nanoparticles with $\gamma-MPS$ to improve interfacial properties with organic matrix. Amounts of $\gamma-MPS$ per unit mass of the particles was increased by decreasing particle size. even though the amount of $\gamma-MPS$ per specific surface area were nearly the same regardless of the particle size. The dispersity of the silica particles in the organic matrix was improved when the surface treated silica particles were used for preparing the polymeric dental restorative composites.

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica (과량 실리카 도입을 통한 고분자 전해질막 표면 개질)

  • Park, Chi Hoon;Kim, Ho Sang;Lee, Young Moo
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide (카본/메조세공 실리카 복합 막을 응용한 키랄 에폭사이드의 가수분해반응과 동시 분리)

  • Choi, Seong Dae;Jeon, Sang Kwon;Park, Geun Woo;Yang, Jin Young;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.

Effect of Additives on the Powder Characteristics of Peonja Dry Elixir (편자 고형엘릭실제의 분체 특성에 미치는 부형제의 영향)

  • Yong, Chul-Soon;Lee, Jong-Dal;Kim, Chong-Kook;Choi, Han-Gon
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • The purpose of this study was to investigate the effect of additives on the powder characteristics of peonja dry elixir. Peonja dry elixirs were prepared with various amounts of dextrin using a spray-dryer, and their powder characteristics such as flow, cohesion and compressibility were evaluated as an angle of repose, cohesion index and compressibility index, respectively. Their powder characteristics were not significantly different from one another, indicating that the hydrophilic dextrin, a base of dry elixir hardly affected their powder characteristics. Peonja dry elixirs were prepared with 10% dextrin and various amounts of additives such as mannitol (hydrophilic excipient), sodium lauryl sulfate (surfactant), colloidal silica (hydrophobic excipient) and HPMC (polymer), respectively, and their angle of repose, cohesion index and compressibility index were measured. The powder characteristics of peonja dry elixirs prepared with mannitol were not significantly different from one another, indicating that the mannitol scarcely improved the powder characteristics of peonja dry elixirs. The angle of repose and cohesion index of peonja dry elixirs significantly decreased with increasing amount of sodium lauryl sulfate to 0.3% followed by no significant changes in them. The cohesion index of peonja dry elixir significantly decreased with increasing amount of colloidal silica. The angle of repose and cohesion index of peonja dry elixir significantly decreased with increasing amount of HPMC to 0.3% followed by an abrupt increase in them. However, the compressibility index of peonja dry elixir significantly increased with increasing amount of HPMC to 0.3% followed by an abrupt decrease in them. Our results suggested that a small amount of sodium lauryl sulfate, colloidal silica and HPMC improved markedly the powder characteristics of peonja dry elixirs due to forming stronger and less hygroscopic shell of peonja dry elixirs. Among the peonja dry elixirs studied, the peonja dry elixir prepared with 0.3% sodium lauryl sulfate and 0.3% HPMC had the lowest angle of repose of $27^{\circ}$ and cohesion index of 37.8%, and the highest compressibility index of 38.7%, respectively. Thus, sodium lauryl sulfate and HPMC appear to be promising additives for peonja dry elixir, if used in adequate amounts.

  • PDF

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy

  • Couderc, Hugues;David, Eric;Frechette, Michel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.