Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.6.291

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy  

Couderc, Hugues (Department of Mechanical Engineering, Ecole de Technologie Superieure)
David, Eric (Department of Mechanical Engineering, Ecole de Technologie Superieure)
Frechette, Michel (Department of Material Science, Institut de Recherche d'Hydro Quebec)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.6, 2014 , pp. 291-296 More about this Journal
Abstract
In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.
Keywords
Nanocomposites; Polyethylene; Nanosilica; Broadband dielectric spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Nalwa, Polymeric Nanostructure and Their Applications (American Scientific Publishers, Los Angeles, 2007) Vols. 1 and 2.
2 D. Pitsa and M. G. Danikas, N.A.N.O: Brief Reports and Reviews, 6, 497 (2011). [DOI: http://dx.doi.org/10.1142/S1793292011002949].   DOI
3 F. Kremer and A. Schonhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003) p. 508.
4 L. Hui, L. S. Schadler, and J. K. Nelson, IEEE Trans. Diel. Electr. Ins., 20, 641 (2013). [DOI: http://dx.doi.org/10.1109/TDEI.2013.6508768].   DOI
5 E. P. Plueddemann, Silane Coupling Agent (New-York, Plenum Press, 1982).
6 K. Y. Lau, A. S. Vaughan, G. Chen, I. L. Hosier, and F. Holt, J. Phys. D: Appl. Phys., 46, 095303 (2013). [DOI: http://dx.doi.org/10.1088/0022-3727/46/9/095303].   DOI
7 R. W. Sillars, J. Inst. Electr. Eng., 80, 378 (1937). [DOI: http://dx.doi.org/10.1049/jiee-1.1937.0058].   DOI
8 S. Havriliak and S. J. Havriliak, Dielectric and Mechanical Relaxation in Materials (Munich, Ed. Hanser, 1997) p. 14.
9 H. Frolick, Theory of Dielectrics (London, Ed. Oxford University Press, 1958) p. 149.
10 P. A. M. Steeman, F. H. J. Maurer and M. A. Van Es, Polymer, 32, 523 (1991). [DOI: http://dx.doi.org/10.1016/0032-3861(91)90460-Z].   DOI
11 P. A. M. Steeman, F. H. J. Maurer, and J. F. H. Baetsen, Polym. Eng. Sci., 32, 351 (1991). [DOI: http://dx.doi.org/10.1002/pen.760320508].   DOI
12 P. H. T. Vollenberg and D. Heikens, Polymer, 30, 1656 (1989). [DOI: http://dx.doi.org/10.1016/0032-3861(89)90326-1].   DOI   ScienceOn
13 J. K. Nelson, L. A. Utracki, R. K. MacCrone, and C. W. Reed, 2004 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Conference on Electrical Insulation and Dielectric Phenomena, Boulder, USA 2004, Oct. 17-20) p. 314. [DOI: http://dx.doi.org/10.1109/CEIDP.2004.1364251].   DOI