Browse > Article
http://dx.doi.org/10.14478/ace.2014.1070

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide  

Choi, Seong Dae (Department of Chemical Engineering, College of Engineering, Inha University)
Jeon, Sang Kwon (Department of Chemical Engineering, College of Engineering, Inha University)
Park, Geun Woo (Department of Chemical Engineering, College of Engineering, Inha University)
Yang, Jin Young (Department of Chemical Engineering, College of Engineering, Inha University)
Kim, Geon-Joong (Department of Chemical Engineering, College of Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.25, no.5, 2014 , pp. 503-509 More about this Journal
Abstract
The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.
Keywords
Chiral salen catalyst; membrane; SBA-16; optical isomer; separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. Collman, Z. Wang, A. Straumanis, A. M. Quelquejeu, and E. Rose, An efficient catalyst for asymmetric epoxidation of terminal olefins, J. Am. Chem. Soc., 121, 460 (1999).   DOI   ScienceOn
2 R. M. Hanson, Highly diastereoselective reaction of a chiral, non-racemic amide enolate with (S)-glycidyl tosylate, Chem. Rev., 91, 437 (1991).   DOI
3 M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis, Science, 277, 936 (1997).   DOI
4 L. P. C. Nielson, C. P. Stevenson, D. G. Backmond, and E. N. Jacobsen, Highly reactive and enantioselective kinetic resolution of terminal epoxides with $H_2O$ and HCl catalyzed by new chiral (salen) Co complex linked with Al, J. Am. Chem. Soc., 126, 1360 (2004).   DOI   ScienceOn
5 G-J Kim and J. H. Shin, The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation, Tetrahedron Letters, 40, 6827 (1999).   DOI   ScienceOn
6 B. D. Brandes and E. N. Jacobson, Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen) Co (III) complexes; Practical synthesis of enantioenriched terminal epoxides and 1,2-Diols, Tetrahedron: Asymmetry, 8, 3927 (1997).   DOI   ScienceOn
7 P. S. Savle, M. J. Lamoreaux, J. F. Berry, and R.D. Gandour, New chiral cobalt salen complexes containing Lewis acid $BF_3$; A highly reactive and enantioselective catalyst for the hydrolytic kinetic resolution of epoxides, Tetrahedron: Asymmetry, 9, 1842 (1998).
8 S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, and E. N. Jacobson, Synthesis of polymeric salen complexes and application in the enantioselective hydrolytic kinetic resolution of epoxides as catalysts, J. Am. Chem. Soc., 124, 1307 (2002).   DOI   ScienceOn
9 D. Pini, A. Mandoli, S. Orlandi, and P. Salvadori, First example of a silica gel-supported optically active Mn(III)-salen complex as a heterogeneous asymmetric catalyst in the epoxidation of olefins, Tetrahedron: Asymmetry, 10, 3883 (1999).   DOI   ScienceOn
10 S. B. Ogunwumi and T. Bein, Intrazeolite assembly of a chiral manganese salen epoxidation catalyst, Chem. Commun., 901 (1997).
11 F. Minutolo, D. Pini, and P. Salvadori, Polymer-bound chiral (salen) Mn (III) complex as heterogeneous catalyst in rapid and clean enantioselective epoxidation of unfunctionalised olefins, Tetrahedron Letters, 37, 3375 (1996).   DOI
12 S. Shimizu, Y. Kiyozumi, and F. Mizukami, Catalytic activity of a zeolite disc synthesized through solid-state reactions, Chem. Lett., 403 (1996).
13 T. Sano, Y. Kiyozumi, F. Mizukami, H. Takaya, T. Mouri, and M. Watanabe, Steaming of ZSM-5 zeolite film, Zeolites, 12, 131 (1992).   DOI
14 Y. Kiyozumi, F. Mizukami, K. Maeda, T. Kodzasa, M. Toba, and S. Niwa, Synthesis of oriented zeolite film on mercury, Stud. Surf. Sci. and Catal., 105, 2225 (1997).   DOI
15 Y. Kiyozumi, F. Mizukami, K. Maeda, M. Toba, and S. Niwa, Synthesis of a zeolite film on a mercury surface, Adv. Mater., 8, 517 (1996).   DOI
16 L.P. Szabo, E. H. Lipai, P. Hadik, E. Nagy, F. Mizukami, S. Shimizu, I. Kiricsi, and J. Bodnar, DL-lactic acid separation on enantiomodified zeolite membrane, J. Ind. Chem., 26, 147 (1998).
17 T. Sano, Y. Kiyozumi, M. Kawamura, F. Mizukami, H. Takaya, T. Mouri, W. Inaoka, Y. Toida, M. Watanabe, and K. Toyoda, Preparation and characterization of ZSM-5 zeolite film, Zeolites, 11, 842 (1991).   DOI
18 S.-D. Choi and G-J Kim, Enantioselective hydrolytic kinetic resolution of epoxides catalyzed by chiral Co(III) salen complexes immobilized in the membrane reactor, Catal. Lett., 92, 35 (2004).   DOI