• 제목/요약/키워드: Hydrolysis rate

검색결과 712건 처리시간 0.022초

TNT 오염토의 염기성 가수분해 효율 향상을 위한 최적 운전인자 도출 (Determination of Optimum Operating Parameters for Enhanced Alkaline Hydrolysis of Soils Contaminated with TNT)

  • 이환;최재헌;이철효;김주엽
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.103-110
    • /
    • 2015
  • Nitro-aromatic Compounds (NACs) of explosives are structurally non-degradable materials that have an adverse effect to humans and ecosystems in case of emissions in natural due to the strong toxicity. In this study, batch test in the laboratory-scale has been conducted to find some process parameters of alkaline hydrolysis by considering the characteristics of NACs which are unstable in a base status and field application evaluation have been performed on the batch test results. Based on the experimental results of both laboratory and pilot-scale test, the optimum conditions of parameters for the alkaline hydrolysis of soils contaminated with explosives were pH 12.5, above the solid-liquid ratio 1 : 3, above the room temperature and 30 minute reaction time. In these four process parameters, the most important influencing factor was pH, and the condition of above pH 12.0 was necessary for high contaminated soils (more than 60 mg/kg). In the case of above pH 12.5, the efficiency of alkaline hydrolysis was very high regardless of the concentrations of contaminated soils. At pH 11.5, the removal efficiency of TNT was increased from 76.5% to 97.5% when the temperature in reactor was elevated from room temperature to 80℃. This result shows that it is possible to operate the alkaline hydrolysis at even pH 11.5 due to increased reaction rate depending on temperature adjustment. The results found in above experiments will be able to be used in alkaline hydrolysis for process improvement considering the economy.

DNA 모델인 Bis(p-nitrophenyl)phosphate에 대한 2핵 Ni(II) 착 화합물의 촉매 가수분해 반응에서 물 분자와 금속 이온의 역할 (The Roles of Metal Ions and Water Molecules in the Hydrolysis of Bis(p-nitrophenyl)phosphate as a DNA Model Catalyzed by Dinuclear Ni(II) Complex)

  • 성낙도;윤기섭
    • Applied Biological Chemistry
    • /
    • 제48권2호
    • /
    • pp.115-119
    • /
    • 2005
  • DNA 모델 화합물인 bis(p-nitrophenyl)phosphate(BNPP)에 대한 2핵 닉켈(II) 착 화합물, ${\mu}-aquapentaaqua[{\mu}-3,6-bis(6'-methyl-2'-pyridyl)pyridazine]chlorodinickel(II)$ trichloride trihydrate(APNT)의 촉매 가수분해 반응성을 검토하였다. APNT의 산 해리 상수는 각각 $pKa_1=7.9$$pKa_2=9.6$이었으며 BNPP의 가수분해반응 결과, pH 7.0과 $50^{\circ}C$에서 무 촉매인 경우에 비하여 가수분해 속도를 약 37만 배 가량 촉진시킴을 확인하였다. 그리고 pH-rate profile로부터 실험 사실을 합리적으로 설명할 수 있는 APNT에 의한 BNPP의 촉매 가수분해 반응에 대한 일련의 catalytic cycle을 제안하였다. 따라서 반응의 각 단계에서 2핵 닉켈(II) 착 화합물의 금속 이온들은 phosphoryl group의 전달 속도를 촉진하였고 물 분자는 친핵체와 양성자 전달체로 작용하였다.

아밀로오스 함량이 다른 산처리 옥수수전분의 형태학적 특성 (Morphological Properties of Lintnerized Maize Starches with Different Amylose Content)

  • 신말식;이신경
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1086-1090
    • /
    • 1997
  • Morphological properties on lintnerized maize starches with different amylose content were investigated. With increasing the lintnerization periods and decreasing the amylose content, hydrolysis rate was increased. As amylose content of starch was increased, the degree of damage with acid treatment was decreased by SEM. With increasing hydrolysis, iodine affinity, apparent amylose content and ${\lambda}_{max}$ of lintnerized starches were decreased. Water binding capacities of lintnerized starches were higher than those of native starches.

  • PDF

초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지- (A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy -)

  • 서말용;조호현;김삼수;전재우;이승구
    • 한국염색가공학회지
    • /
    • 제14권4호
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

Corn Straw as Substrate for Producing Ethanol by Solid-State-Fermentation

  • Dong, Yong-Sheng;Qiao, Chang-Sheng;Wang, Rui-Ming;Wang, Li-Yan;Jia, Shi-Ru
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.204-211
    • /
    • 2005
  • The technology of Solid-State-Fermentation (SSF) with corn straw by Pichia ohmeri T021 was studied in this article. After being crushed, the corn straw powder was added into vitriol solutions to hydrolysis, which the quality proportion of corn straw: water: vitriol (98%) is 20:80:1. The mixtures was incubated at 120$^{\circ}C$ for 1 hour, and the hydrolysis rate reached 19%. Following, the mixture was adjusted to pH 4.5 by sodium carbonate and added cellulase (25IFPU/g). The hydrolysis rate reached 15% after the mixture was incubated at 50$^{\circ}C$ for 25h. The mixture which hydrolysed by vitriol was inoculated by Pichia ohmeri T021 (5${\times}10^7$cell/g) and added cellulase (25 IFPU/g) at the same time. The ethanol yield reached 2.99g per 100 gram substrate after the fermenting grains was incubated at 33$^{\circ}C$, pH 4.5 for 5 days.

  • PDF

알칼리 $NaBH_4$ 용액의 수소발생특성에 미치는 Co-P 촉매의 영향 (Effects of Co-P Catalysts on Hydrogen Generation Properties from Alkaline $NaBH_4$ Solution)

  • 조근우;권혁상
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.379-385
    • /
    • 2005
  • Effects of Co and Co-P catalysts on the hydrolysis of alkaline $NaBH_4$ solution were investigated. Co and Co-P catalysts were prepared on Cu substrate by electroplating. Hydrogen generation rate of Co-P catalyst was much faster than that of Co catalyst, demonstrating that Co-P had higher intrinsic catalytic activity for the hydrolysis of $NaBH_4$ than Co. Hydrogen generation properties of Co-P catalysts largely depended on cathodic current density and electroplating time because they influenced on the P concentration of the Co-P catalysts. Maximum hydrogen generation rate of Co-P catalyst was 1066 ml/min.g-catalyst in 1 wt.% NaOH + 10 wt.% $NaBH_4$ solution at $20^{\circ}C$, which was obtained at cathodic current density of $0.01\;A/cm^2$ for 130 s.

SnCl$_4$가수분해 반응의 화학증착법에 의한 SnO$_2$박막의 제조 및 가스센서 특징(I) Preparation of SnO2 Thin Films by chemical Vapor Deposition Using Hydrolysis of SnCl4 and gas-sensing characteristics of the Film (Preparation of SnO$_2$ Thin Films by Chemical Vapor Deposition Using Hydrolysis of SnCla$_4$ and Gas-sensing Characterisics of the Film -Effect of Deposition Variables on the Deposition Behavior and the Electrical Resistivity of SnO$_2$ Thin Film-)

  • 김용일;김광호;박희찬
    • 한국표면공학회지
    • /
    • 제23권2호
    • /
    • pp.18-23
    • /
    • 1990
  • Thin films of tin oxide were prepared by chemical vapor deposition (C.V>D) using the hydrolysis reaction of SnCl4, Deposition rate increased with the increase of temperature up to $500^{\circ}C$and then decreased at $700^{\circ}C$, Deposition rate with SnCl4 partial pressure showed RidealEley behavir. It was found that SnO2 thin film deposited at the temperature above $400^{\circ}C$ had(110) and (301) plane preferred orientation with crystallinity of rutite structure. Electrical resisvity of SnO2 thin film decreased with increase increase of deposition temperature and showed minimum value of 10-3 ohm at $500^{\circ}C$and than largely increased increased with further increase of deposition temperture.

  • PDF

홍게 가공부산물의 효소적 단백질 가수분해 최적화 (Enzymatic Hydrolysis Optimization of a Snow Crab Processing By-product)

  • 장종태;서원호;백형희
    • 한국식품과학회지
    • /
    • 제41권6호
    • /
    • pp.622-627
    • /
    • 2009
  • 홍게 가공부산물을 고부가가치 식품소재로 이용하기 위하여 단백질 분해효소를 이용하여 가수분해하고 반응표면분석법으로 가수분해 조건을 최적화 하였다. 홍게 가공부산물을 단백질 분해 효소인 Flavourzyme으로 가수분해한 결과 효소반응곡선은 반응 초기 빠른 반응속도를 나타내다가 이 후에 느려지는 전형적인 형태를 나타내었다. 반응초기 90분까지 가수분해도는 30%까지 증가하다가, 이후 최종적으로 32-36%를 나타내었다. 최적화를 하기 위한 가수분해 요인변수로는 반응온도, 반응시간 및 홍게 가공부산물에 대한 Flavourzyme의 양을 선정하였고, 5개의 수준에서 부호화하여 이들을 중심합성설계법을 이용하여 반응표면분석을 실시하였다. 홍게 가공부산물을 Flavourzyme을 이용하여 반응표면 분석법으로 가수분해 조건을 최적화한 결과, 온도 $51.8^{\circ}C$, 반응시간 4시간 45분, 홍게 가공부산물에 대한 Flavourzyme의 양 3.8%로 나타났다. 홍게 가공부산물 효소분해물은 향미소재 및 반응향 제조의 전구물질로서 이용할 수 있을 것이다.

제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체의 가수분해 반응 메카니즘 (Kinetics and Hydrolysis Mechanism of Herbicidal N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide Derivatives)

  • 이찬복;류재욱;김대황;성낙도
    • Applied Biological Chemistry
    • /
    • 제38권5호
    • /
    • pp.455-462
    • /
    • 1995
  • 새로운 6종의 제초성, N-(2,6-dimethoxypyrimidin-2-yl)aminocarbonyl-2-치환(Z)-6-(1-hyd roxy-2-fluoroethyl)benzenesulfonamide 유도체(S)를 합성하여 $45^{\circ}C$의 15%(v/v) acetonitrile 수용액속에서 일어나는 가수분해 반응상수를 측정하고 pH-효과, 용매효과, ortho-치환기 효과, 열 역학적 활성화 파라미터(${\Delta}H^{\neq}$${\Delta}S^{\neq}$) 등의 반응 속도론적인 자료들과 pKa상수(4.80) 및 가수분해 반응 생성물(2-(1-hydroxy-2-fluoroethyl)benzenesulfonamide 및 4,6-dimethoxyaminopyrimidine) 분석 등의 비 반응 속도론적 결과로부터 반응속도식을 유도하고 반응메카니즘을 제안하였다. pH 8.0 이하에서는 일반 산-촉매반응($A-S_E2$)과 특정 산-촉매 반응으로 conjugate acid ($SH^+$)와 사면체 중간체(I)를 경유하는 A-2형(또는 $A_{AC}2$형)반응 그리고 pH 9.0 이상에서는 물 분자가 일반염기(B)로 작용하여 conjugate base (CB)를 경유하는 $(E_1)_{anion}$ 반응으로 진행되는 가수분해 반응 메카니즘을 검토하였으며 pH $7.0{\sim}9.0$사이의 용액중에서는 이들 두 반응이 경쟁적으로 일어남을 알았다.

  • PDF