The Roles of Metal Ions and Water Molecules in the Hydrolysis of Bis(p-nitrophenyl)phosphate as a DNA Model Catalyzed by Dinuclear Ni(II) Complex

DNA 모델인 Bis(p-nitrophenyl)phosphate에 대한 2핵 Ni(II) 착 화합물의 촉매 가수분해 반응에서 물 분자와 금속 이온의 역할

  • Sung, Nack-Do (Research Center for Transgenic Cloned Pigs, Division of Applied Biology and Chemistry, College of Agricultural and Life Science, Chung-Nam National University) ;
  • Yun, Ki-Seob (Research Center for Transgenic Cloned Pigs, Division of Applied Biology and Chemistry, College of Agricultural and Life Science, Chung-Nam National University)
  • 성낙도 (충남대학교 형질전환복제돼지연구센터) ;
  • 윤기섭 (충남대학교 형질전환복제돼지연구센터, 농업생명과학대학 응용생물화학부)
  • Published : 2005.06.30

Abstract

The catalytic hydrolysis reactivities of dinuclear nickel (II) complex, ${\mu}-aquapentaaqua[{\mu}-3,6-bis(6'-methyl-2'-pyridyl)pyridazine]chlorodinickel\;(II)$ trichloride trihydrate (APNT) for bis(p-nitrophenyl) phosphate (BNPP) as a DNA model compound were investigated. The dissociation constants of APNT were $pKa_1=7.9$ and $pKa_2=9.6$, respectively. The hydrolysis rate constant of BNPP compound by APNT was showed the rate enhancement of about 370,000 times in the case of none catalyst at pH 7.0 and $50^{\circ}C$. Based on the findings, we proposed the catalytic cycle for the hydrolysis of BNPP by APNT complex. The metal ions of dinuclear nickel (II) complex significantly enhance the transfer rate of phosphoryl group in the catalytic process and the water molecules as nucleophile and proton transfer agent act in different steps.

DNA 모델 화합물인 bis(p-nitrophenyl)phosphate(BNPP)에 대한 2핵 닉켈(II) 착 화합물, ${\mu}-aquapentaaqua[{\mu}-3,6-bis(6'-methyl-2'-pyridyl)pyridazine]chlorodinickel(II)$ trichloride trihydrate(APNT)의 촉매 가수분해 반응성을 검토하였다. APNT의 산 해리 상수는 각각 $pKa_1=7.9$$pKa_2=9.6$이었으며 BNPP의 가수분해반응 결과, pH 7.0과 $50^{\circ}C$에서 무 촉매인 경우에 비하여 가수분해 속도를 약 37만 배 가량 촉진시킴을 확인하였다. 그리고 pH-rate profile로부터 실험 사실을 합리적으로 설명할 수 있는 APNT에 의한 BNPP의 촉매 가수분해 반응에 대한 일련의 catalytic cycle을 제안하였다. 따라서 반응의 각 단계에서 2핵 닉켈(II) 착 화합물의 금속 이온들은 phosphoryl group의 전달 속도를 촉진하였고 물 분자는 친핵체와 양성자 전달체로 작용하였다.

Keywords

References

  1. Westheimer, F. H. (1987) Why nature chose phosphates. Science 235, 1173-1178 https://doi.org/10.1126/science.2434996
  2. Lad, C., Williams, N. H. and Wolfenden, R. (2003) The rate of hydrolysis of phosphomonoesters dianions and the exceptional catalytic proficiencies of protein and inositol phosphates. Proc. Natl. Acad. Sci. USA 100, 5607-5610
  3. Williams, N. H., Bryan, T., Mark, W. and Chin, J. (1999) Structure and nuclease activity of simple dinuclear metal complexes: Quantitave dissection of the role of metal ions. Acc. Chem. Res. 32, 485-493 https://doi.org/10.1021/ar9500877
  4. Cowan, J. A. (2001) Chemical nucleases. Curr. Opin. Chem. Biol. 5, 634-642 https://doi.org/10.1016/S1367-5931(01)00259-9
  5. Liu, C., Wang, M., Zhang, T. and Sun, H. (2004) DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coordin. Chem. Rev. 248, 147-168 https://doi.org/10.1016/j.cct.2003.11.002
  6. Sung, N. D., Seo, J. S., Rosemary, C. H. and Chin, J. (1996) Structure and reactivity of a dinuclear cobalt (III) complex with a bridging phosphate monoester. Inorg. Chem. 35, 7472-7473 https://doi.org/10.1021/ic9603924
  7. Sung, N. D., Seo, J. S., Rosemary, C. H., Williams, D. and Chin, J. (1998) Structure and reactivity of a dinuclear cobalt (III) complex with peroxide and phosphate diester analogues bridging the metal ions. J. Am. Chem. Soc. 120, 9943-9944 https://doi.org/10.1021/ja9811905
  8. Chin, J. and Banaszczyk, M. (1989) Rate-determing complexation in catalytic hydrolysis of unactivated esters in neutral water, J. Am. Chem. Soc. 111, 2724- 2726 https://doi.org/10.1021/ja00189a062
  9. Domingos, J. B., Longhinotti, E., Bunton, C. A. and Nome, F. (2003) Reaction of Bis(2,4-dinitrophenyl)phosphate with hydroxylamine, J. Org. Chem. 68, 7051-7058 https://doi.org/10.1021/jo034348z
  10. Hendry, P. and Sargeson, A. M. (1989) Metal ion promoted phosphate ester hydrolysis. Intramolecular attack of coordinated hydroxide ion. J. Am. Chem. Soc. 111, 2521-2527 https://doi.org/10.1021/ja00189a025
  11. Frey, S. T., Hutchins, B. M., Anderson, B. J., Schreiber, T. K. and Hagerman, M. E. (2003) Catalytic hydrolysis of 4-nitrophenylphosphate by lanthanum (III)-hectorite. Langmuir 19, 2188-2192 https://doi.org/10.1021/la020693s
  12. Gao, J., Martell, A. E. and Reibenspies, J. (2002) Novel Cu (II) Cd (II) macrocyclic complex that hydrolyzes an activated phosphate diester. Inorg. Chim. Acta 329, 122-128 https://doi.org/10.1016/S0020-1693(02)00694-1
  13. Williams, N. H. (2004) Models for biological phosphoryl transfer. Biochem. Biophy. Acta 279-287
  14. Chin, J. (1997) Artificial dinuclear phosphoesterases. Curr. Opin. Chem. Biol. 1, 514-521 https://doi.org/10.1016/S1367-5931(97)80046-4
  15. Sung, N. D., Yun, K. S., Kim, J. G. and Suh, I W. (2000) ${\mu}$-aquapentaaqua[${\mu}$-3,6-bis(6'-methyl-2'-pyridyl)pyridazine]chlorodinickel (II) trichloridetrihydrate, Acta Cryst. C56, e370-e371
  16. Avery, H. E. (1981) In Basic reaction kenetics and mechanisms (1st ed.). The Macmillan Press. Ltd. London. pp. 12-47
  17. Wolfenden, R., Ridgway, C. and Young, G. (1998) Spontaneous hydrolysis of ionized phosphate monoesters and diesters and the proficiencies of phosphates and phosphodiesterase as catalysts. J. Am. Chem. Soc. 120, 833-834 https://doi.org/10.1021/ja9733604
  18. Issacs, N. S. (1987) In Physical Organic Chemistry. Longman. Scientific & Technical, pp. 331-358
  19. Sung, N. D. (2002) Kinetics and hydrolysis mechanism of insecticide O,O-diethyl-O-(1-phenyl-3-trifluoromethylpyrazol-5-yl)phosphorothioate (Flupyrazofos). Kor. J. Pesti. Sci. 6, 218-223
  20. Yun, K. S. (2001) Dinuclear Ni (II) complex promoted hydrolysis of Bis(p-nitrophe- nyl)phosphate as DNA model. M.S. Thesis. Chungnam National University, Daejeon, Korea
  21. Wilcox, D. E. (1996) Binuclear metallohydrolases. Chem. Rev. 96, 2435-2458 https://doi.org/10.1021/cr950043b
  22. Franzini, E., Fantucci, P. and Gioia, L. D. (2003) Density functional theory investigation of guanosine triphosphate models catalytic role $^Mg{2+}$ ions in phosphate ester hydrolysis. J. Mol. Catal. A: Chem. 409-417
  23. Humphry, T., Forconi, M., Williams, N. H. and Hengge, A. C. (2004) Altered mechanism of reactions of phosphate esters bridging a dinuclear metal center. J. Am. Chem. Soc. 126, 11864-11869 https://doi.org/10.1021/ja047110g
  24. Williams, N. H., Lebuis, A. M. and Chin, J. (1999) A structural and functional of dinuclear metallophosphatases. J. Am. Chem. Soc. 121, 3341-3348 https://doi.org/10.1021/ja9827797
  25. Sung, N. D. (1994) The transition state analog for metal catalyzed hydrolysis of an ester. Agri. Chem. Biotechnol. 37, 447-450
  26. Sung, N. D. (1998) Hydrolysis of phosphate diesters as nucleic acid model. Agri. Chem. Biotechnol. 41, 611-612