• Title/Summary/Keyword: Hydrologic risk

Search Result 60, Processing Time 0.027 seconds

Reestimation of Hydrologic Design Data in Donghwa Area (동화지구 절계 수문량 재추정)

  • Kwon, Soon-Kuk;Lee, Jae-Hyoung;Jung, Jae-Sung;Chon, Il-Kweon;Kim, Min-Hwan;Lee, Kyung-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.3-10
    • /
    • 2004
  • The fundamental study of hydrologic redesign of Donghwa area located in a sccond tributary of Seomjin river was performed. The amounts of hydrologic design were estimated using the available cumulated hydrology data provided by Korea Agricultural and Rural Infrastructure Corporation (KARICO). The management status of The water resources in Donghwa area was also widely surveyed. The probability rainfalls, probable maximum precipitation (PMP) and probability floods were estimated and subsequently their changes analyzed. The amount of 200 year frequency rainfall with l day duration was 351.1 mm, 2.5 % increased from the original design value, and The PMP was 780.2 mm. The concentration time was reestimated as 2.5 hours from existing 2.4 hours. Soil Conservation Service(SCS) method was used to estimate effective rainfall- The runoff curve number was changed from 90 to 78, therefore the maximum potential retention was 71.6 mm, 154 % increased from the original value. The Hood estimates using SCS unit hydrograph showed 8 % increase from original value 623 $m^3$/s to 674 $m^3$/s and The probable maximum Hood was 1,637 $m^3$/s. Although the Row rate at the dam site was increased, the Hood risk at the downstream river was decreased by the Hood control of the Donghwa dam.

A Development of Hydrologic Dam Risk Analysis Model Using Bayesian Network (BN) (Bayesian Network (BN)를 활용한 수문학적 댐 위험도 해석 기법 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.781-791
    • /
    • 2015
  • Dam risk analysis requires a systematic process to ensure that hydrologic variables (e.g. precipitation, discharge and water surface level) contribute to each other. However, the existing dam risk approach showed a limitation in assessing the interdependencies across the variables. This study aimed to develop Bayesian network based dam risk analysis model to better characterize the interdependencies. It was found that the proposed model provided advantages which would enable to better identify and understand the interdependencies and uncertainties over dam risk analysis. The proposed model also provided a scenario-based risk evaluation framework which is a function of the failure probability and the consequence. This tool would give dam manager a framework for prioritizing risks more effectively.

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

Study on Risk Analysis of Debris Flow Occurrence Basin Using GIS (GIS를 이용한 토석류 발생유역 위험성분석에 관한 연구)

  • Jun, Kye-Won;Oh, Chae-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • Annually, many parts of the Korea have been damaged from the localized heavy rain and/or typhoons which peak between June and September, which result in extensive financial and human loss. Especially, because the most area of Gangwon province is composed of the steep slope mountains, the damages by the debris flow or land-sliding are more frequent and the frequency has been increased. To analyze the characteristics and causes of these debris flow disasters, lots of study are recently being conducted through database of weather, hydrologic, soil etc using a GIS or remote sensing. In this study, we applied GIS method to analyze the risk of the debris flow area. With the statistical analysis and infinite slope stability model(SINMAP), the debris flow risk level of the mountain slope was generated. As a result, the GIS statistical analysis showed high correlation that former model of SINMAP in determining the debris flow risk area.

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model (강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.723-726
    • /
    • 2008
  • It is not always easy to estimate the parameters in hydrologic models due to insufficient hydrologic data when hydraulic structures are designed or water resources plan are established, uncertainty analysis, therefore, are inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. The NWS-PC model is calibrated against observed daily runoff, and thirteen parameters in the model are optimized as well as posterior distributions associated with each parameter are derived. The Bayesian Markov Chain Monte Carlo shows a improved result in terms of statistical performance measures and graphical examination. The patterns of runoff can be influenced by various factors and the Bayesian approaches are capable of translating the uncertainties into parameter uncertainties. One could provide against an expected runoff event by utilizing information driven by Bayesian methods. Therefore, the rainfall-runoff analysis coupled with the uncertainty analysis can give us an insight in evaluating flood risk and dam size in a reasonable way.

  • PDF

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF