• Title/Summary/Keyword: Hydrogen-transfer reaction

Search Result 163, Processing Time 0.031 seconds

Heat and Mass Transfer Properties of Mm-Based Metal Hydride upon Co Content (Mm계 금속수소화물의 Co함량에 따른 열 및 물질전달특성)

  • Park, Chan-kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2004
  • The effect of the cobalt content on the thermodynamic and, heat and mass transfer properties of the $MmNi_{5-y}B_{y-z}C_z(y=0.5{\sim}1.5,\;z=0.5)$hydrogen storage alloys has been studied systematically. The P-C isotherms curves show that with increasing cobalt content in the alloys, the plateau pressure of the hydrogen absorption and desorption and enthalpy(${\Delta}H$) increases steeply and the plateau region becomes flat, while entropy(${\Delta}S$) decreases. Also at the constant cobalt content the hydrogen transfer rate decreases with the reaction temperature, while the initial reaction kinetics increases. But the initial reaction with hydrogen completes within 1min, although the reaction proceeds about 30minutes thereafter.

An Experimental Study of Heat and Mass Transfer During Absorption and Desorption Processes in a Hydride Material Bed (수소저장합금 반응용기에서 수소 흡.탈장과정에서의 열 및 물질전달 특성에 관한 실험적인 연구)

  • 박찬우;강병하;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.202-211
    • /
    • 1995
  • Heat and hydrogen transfer characteristics have been experimentally investigated for a hydride reaction bed, in which hydride material LaN $i_{4,7}$A $l_{0.3}$ is contained for hydrogen storage. This problem is of particular interest in the design of metal hydride devices such as metal-hydride refrigerators, heat pumps, or metal-hydride storage units. Transient behavior of hydrogen transfer through the hydride materials as well as heat transfer is studied during absorption and desorption processes in detail. The experimental results obtained indicate that the mass flow of the hydrogen is strongly affected by the governing parameters, such as the initial pressure of the reaction bed, absorption or desorption period, and cooling or heating temperature. These mass transfer results are along with the heat transfer rate between hydride materials and heat transfer medium in the reaction bed.d.d.

DFT Calculations for the Hydrogen Transfer Reaction in Bis(μ-oxo)dicopper-enzyme (DFT방법을 이용한 Bis(μ-oxo)dicopper-enzyme의 수소이동반응 연구)

  • Park, Ki-soo;Kim, Yong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.499-504
    • /
    • 2009
  • Metals have often played important roles to some enzymatic reactions that are essential to biological processes. Therefore many scientists have studied the reaction mechanisms of catalytic reactions in metaloenzymes for many years. Methane MonoOxygenase (MMO) is an enzyme that oxidize methane to methyl alcohol. Recently Tolman et al. studied a model reaction for MMO, which is a hydroxide transfer reaction in Bis-($\mu$-oxo)-dicopper complex, and suggested several possible mechanisms. Later a two-step mechanism, which is hydrogen transfer followed by hydroxide rebound, was proposed from theoretical studies. In this study we calculated the reactant, product, and the transition state structures, and energetics of the first hydrogen transfer reaction using various DFT methods including recently developed the MO6 family of DFT, namely, MO6, MO6L, and MO6-2X. We found that the M06/6-31G(d,p)/LANL2DZ method reproduce the experimental XRD structure of reactants very well. The TS structures, barrier heights, and reaction energies depend very much on the size of the basis sets.

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study

  • Kim, Sang-Su;Kim, Min-Ho;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1481-1484
    • /
    • 2009
  • When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane (효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향)

  • Lee, Shin-Ku;Park, Joon-Guen;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Synthesis of (2,7-dibromo-9,9-dialkyl-substituted-fluorene)s for Poly(dialkylfluorene)s by Phase Transfer Catalytic Reaction

  • Kwon, Seung-Ho;Kim, Jin-Sung;Park, Ji-Ho;Yoo, Jae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.724-727
    • /
    • 2002
  • 2,7-dibromo-9, 9-dialkyl-substituted-fluorene derivatives were prepared by the alkylation of 2,7-dibromofluorene with various alkyl groups under two-phase phase transfer catalysis (PTC) conditions, as monomers for synthesizing poly(dialkylfluorene)s. Tetra-nbutylammonium hydrogen sulfate (TBAHS) was used as a phase transfer catalyst to enhance nucleophilic substitution. In addition, NaOH in water (25M) was used as a base to generate anions. Compared to conventional alkylation using butyllithium(BuLi), the reaction using the PTC technique attained high selectivity and substantial conversion of reactants, due to the enhanced reaction rate, while the reaction was carried out under moderate conditions. An approximately 90% yield was obtained from the reaction and the reaction time was remarkably reduced. 2,7-dibromo-9,9-dihexyl-fluorene, 2,7-dibromo-9,9-dioctyl-fluorene, and 2,7-dibromo-9,9-di(2-ethylhexyl)-fluorene were effectively synthesized by phase transfer catalytic reaction.

  • PDF

A Study on the Catalytic Ortho-Para Hydrogen Conversion in the Cryogenic Heat Exchanger Filled with Catalysts for Hydrogen Liquefaction (수소액화용 극저온 열교환기 내 촉매 수소 전환반응에 관한 연구)

  • SOHN, SANGHO;YOON, SEOK HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.180-188
    • /
    • 2021
  • This paper conducted a study on the ortho-para hydrogen conversion in the cryogenic heat exchanger filled with catalysts for hydrogen liquefaction by utilizing the numerical model of plate-fin heat exchanger considering catalytic reaction of ortho-para hydrogen conversion, heat and mass transfer phenomena and fluid dynamics in a porous medium. Various numerical analyzes were performed to investigate the characteristics of ortho-para hydrogen conversion, the effects of space velocity and activated catalyst performance.