Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.7.1481

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study  

Kim, Sang-Su (Department of Chemistry, Ajou University)
Kim, Min-Ho (Division of Energy Systems Research, Ajou University)
Kang, Hyuk (Department of Chemistry, Ajou University)
Publication Information
Abstract
When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.
Keywords
Excited state hydrogen transfer; Phenol; Aminophenol; Substitution effect; TDDFT;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Dreuw, A.; Head-Gordon, M. J. Am. Chem. Soc. 2004, 126(12), 4007   DOI   ScienceOn
2 Sobolewski, A. L.; Domcke, W. Eur. Phys. J. D 2002, 20(3), 369   DOI   ScienceOn
3 Mori, H. et al. Chem. Phys. 2002, 277(2), 105   DOI   ScienceOn
4 Gerhards, M.; Unterberg, C. Appl. Phys. A 2001, 72, 273   DOI   ScienceOn
5 Jansen, A.; Gerhards, M. J. Chem. Phys. 2001, 115(12), 5445   DOI   ScienceOn
6 Meenakshi, P. S.; Biswas, N.; Wategaonkar, S. J. Chem. Phys. 2002, 117(24), 11146   DOI   ScienceOn
7 Wategaonkar, S.; Doraiswamy, S. J. Chem. Phys. 1996, 105(5), 1786   DOI   ScienceOn
8 Robinson, T. W. et al. J. Phys. Chem. A 2004, 108(20), 4420   DOI   ScienceOn
9 Shinozaki, M. et al. Phys. Chem. Chem. Phys. 2003, 5(22), 5044   DOI   ScienceOn
10 Tsuji, N. et al. Phys. Chem. Chem. Phys. 2006, 8(1), 114   DOI   ScienceOn
11 Devine, A. L.; Nix, M. G. D.; Cronin, B.; Ashfold, M. N. R. Phys. Chem. Chem. Phys. 2007, 9(28), 3749   DOI   ScienceOn
12 King, G. A. et al. Phys. Chem. Chem. Phys. 2008, 10(42), 6417   DOI   ScienceOn
13 Lim, I. S.; Lim, J. S.; Lee, Y. S.; Kim, S. K. J. Chem. Phys. 2007, 126(3)
14 Lim, J. S. et al. Angew. Chem. Int. Ed. 2006, 45(38), 6290   DOI   ScienceOn
15 Devine, A. L.; Nix, M. G. D.; Dixon, R. N.; Ashfold, M. N. R. J. Phys. Chem. A 2008, 112(39), 9563   DOI   ScienceOn
16 David, O. et al. J. Chem. Phys. 2004, 120(21), 10101   DOI   ScienceOn
17 Dedonder-Lardeux, C.; Grosswasser, D.; Jouvet, C.; Martrenchard, S. Phys. Chem. Comm. 2001, 4, 21
18 David, O.; Dedonder-Lardeux, C.; Jouvet, C.; Sobolewski, A. L. J. Phys. Chem. A 2006, 110(30), 9383   DOI   ScienceOn
19 Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2001, 105 (40), 9275   DOI   ScienceOn
20 Dedonder-Lardeux, C.; Jouvet, C.; Perun, S.; Sobolewski, A. L. Phys. Chem. Chem. Phys. 2003, 5(22), 5118
21 David, O.; Dedonder-Lardeux, C.; Jouvet, C. Intl. Rev. Phys. Chem. 2002, 21(3), 499   DOI   ScienceOn
22 Frisch, M. J. et al. Gaussian 03; Gaussian, Inc.: Wallingford CT, 2004
23 Flükiger, H. P.; Lüthi, S.; Portmann, J. W. MOLEKEL, 5.3; Swiss National Supercomputing Centre CSCS: Manno (Switzerland), 2000
24 Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. 2002, 4(7), 1093   DOI   ScienceOn
25 Syage, J. A. J. Phys. Chem. 1995, 99(16), 5772   DOI   ScienceOn
26 Pino, G. A. et al. J. Chem. Phys. 1999, 111(24), 10747   DOI   ScienceOn
27 Grégoire, G. et al. J. Phys. Chem. A 2000, 104, 9087   DOI   ScienceOn
28 Grégoire, G. et al. J. Phys. Chem. A 2001, 105, 5971   DOI   ScienceOn
29 Pino, G. et al. Phys. Chem. Chem. Phys. 2000, 2(4), 893   DOI   ScienceOn