• Title/Summary/Keyword: Hydrogen storage and production

Search Result 118, Processing Time 0.024 seconds

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

A Study on the Production of Hydrogen Energy According to Installed Capacity of Energy Storage System on Campus (대학 캠퍼스 내 에너지저장장치 연계에 따른 잉여 수소에너지 생산에 관한 연구)

  • Choi, Bong-Gi;Jun, Jong-Hyun;Kim, Sung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • Depending on how the energy storage system(ESS) is used in a system that can construct a microgrid by using an independent power source such as campus, surplus power can be generated that can not be charged to the ESS. For example, assuming that heat is supplied by a fuel cell in the case of a system in which thermal self-sustaining is prioritized, the fuel cell capacity required differs depending on the heat load. The amount of surplus power that can not be stored in the ESS will appear differently depending on the load operation of the fuel cell for each cycle. This power is hydrogenated through a water electrolytic device to present the amount of hydrogen energy that can be operated for each cycle. Therefore, this paper propose the possibility of utilizing University campus as a hydrogen station.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

Effects of Process Variables on the Growth of Dendrite in the Electrochemical Alane(AlH3) Production Process (전기화학적 알레인(AlH3) 제조 공정에서 덴드라이트의 성장에 미치는 공정 변수 영향)

  • KIM, HYOSUB;PARK, HYUNGYU;PARK, CHUSIK;BAE, KIKWANG;KIM, YOUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.532-540
    • /
    • 2015
  • Electrochemical alane ($AlH_3$) production process can be provided as a synthesis route which close a reversible cycle. In this study, growth inhibition of dendrite as key issues in this process was investigated. Main cause of dendrite growth was because Al fine powder separated in consumption process of Al electrode was moved to Pd electrode. In an effort to avoid this, use of glass block with uniform holes was the most effective to inhibit the amount of dendrite to that of $AlH_3$. Furthermore, effects of Al electrode (anode) type and electrolyte concentration were investigated and the optimal condition for inhibiting dendrite formation was proposed.

Hydrogen Production through High Temperature Steam Electrolysis System (고온 수증기 전해 수소제조)

  • Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Hydrogen energy id the 2nd clean energy able to be produced from the abundant resources, and the products of combustion or reaction do not spread an environmental pollution. Also, the hydrogen is the chemical media easily to transport and storage as energy source. The hydrogen production technology using by water splitting through electrolysis could be usable as a permanent renewable energy system without the environmental impact. The key technology of high temperature steam electrolysis is the development of an electrolyte rapidly to conduct an oxygen or proton ion decomposed from water. Subsequently, the important technology is to keep the joining technology of an electrolyte membrane and electrode materials to affect into the current efficiency.

A Study for Analysis of Micro Heat Grid Configuration and Deduction of Optimal Size in Hydrogen Cities (수소도시 내 마이크로 히트그리드 구성 방안 및 최적 규모 산정 연구)

  • JONGJUN LEE;SEUL-YE LIM;KYOUNG A SHIN;NAMWOONG KIM;DO HYEONG KIM;CHEOL GYU PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.845-855
    • /
    • 2022
  • In response to climate change, the world is continuing efforts to reduce fossil fuels, expand renewable energy, and improve energy efficiency with the goal of achieving carbon neutrality. In particular, R&D is being made on the value chain covering the entire cycle of hydrogen production, storage, transportation, and utilization in order to shift the energy supply system to focus on hydrogen energy. Hydrogen-based energy sources can produce heat and electricity at the same time, so it is possible to utilize heat energy, which can increase overall efficiency. In this study, calculation of the optimal scale for hydrogen-based cogeneration and the composition of heat sources were reviewed. It refers to a method of the optimal heat source size according to the external heat supply and heat storage to be considered. The results of this study can be used as basic data for establishing a hydrogen-based energy supply model in the future.

Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests (연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험)

  • Yoo, Gye-Hyoung;Ju, Yong-Sun;Heo, Seok-Bong;Jeon, Sang-Jin;Kim, Jong-Lyul;Lee, Jong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

Analysis of R&D Investment for Hydrogen and Fuel Cell (수소.연료전지 연구개발 투자현황 분석)

  • Park, No-Eon;Kim, Hyung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.143-148
    • /
    • 2010
  • Research and Development (R&D) investment of hydrogen and fuel cell, funded by government from 2007 to 2008 in Korea, has been analyzed. R&D investment of hydrogen and fuel cell in 2008 would see 9% and 29% of total budget in the field of renewable energy, respectively. It was found that R&D investment is mainly dependent on mission of Ministry in Korea. Basic and apply research would be mainly invested by Ministry of Education, Science and Technology (MEST), while development research would be conducted by Ministry of Knowledge Economy (MKE). In R&D investment by performer, hydrogen technology would be conducted by government-funded institute and university. It was also shown that funds for hydrogen production have been much supported than hydrogen storage. Meanwhile, fuel cell would be mainly conducted by major companies. It was also shown that funds for proton exchange membrane fuel cell (PEMFC) have been much invested than other technology in fuel cell.

Membrane-Based Carbon Dioxide Separation Process for Blue Hydrogen Production (블루수소 생산을 위한 이산화탄소 포집용 2단 분리막 공정 최적화 연구)

  • Jin Woo Park;Joonhyub Lee;Soyeon Heo;Jeong-Gu Yeo;Jaehoon Shim;Jinhyuk Yim;Chungseop Lee;Jin Kuk Kim;Jung Hyun Lee
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The membrane separation process for carbon dioxide capture from hydrogen reformer exhaust gas has been developed. Using a commercial membrane module, a multi-stage process was developed to achieve 90% of carbon dioxide purity and 90% of recovery rate for ternary mixed gas. Even if a membrane module with being well-known properties such as material selectivity and permeability, the process performance of purity and recovery widely varies depending on the stage-cut, the pressure at feed and permeate side. In this study, we verify the limits of capture efficiency at single-stage membrane process under various operating conditions and optimized the two-stage recovery process to simultaneously achieve high purity and recovery rate.

Establishing the Safety of the Hydrogen Industry Through the Revision of Domestic Liquefied Hydrogen Safety Standards (국내 액화수소 안전기준 제·개정을 통한 수소산업 안전성 확립)

  • Kim, Hyun-Jin;Song, Boe-Hee;Tak, Song-Su;Joe, Hoe-Yeon;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.98-105
    • /
    • 2021
  • Currently, the government's announcement of the Korean version of the New Deal Comprehensive Plan ('20.7.14), expanding the supply of hydrogen production and charging facilities, and major companies are rapidly building related facilities such as liquefied hydrogen plants and charging stations. However, safety standards for production, storage facilities, transportation, and utilization of liquefied hydrogen value chains in Korea are insufficient, and safety technologies and safety standards over the entire period of liquefied hydrogen are urgently needed. Accordingly, the Korea Gas Safety Corporation is trying to realize a safe hydrogen economy in Korea by enacting safety standards over the entire period, including liquefied hydrogen plants