• Title/Summary/Keyword: Hydrogen residue

Search Result 80, Processing Time 0.026 seconds

Asparagine-473 Residue Is Important to the Efficient Function of Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.248-252
    • /
    • 2005
  • Dihydrolipoamide dehydrogenase (E3) catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. His-457 of Pseudomonas putida E3 is suggested to interact with the hydroxyl group of Tyr-18 of the other subunit and with Glu-446, a component in the last helical structure. To examine the importance of the suggested interactions in human E3 function, the corresponding residue of human E3, Asn-473, was substituted to Leu using site-directed mutagenesis. The E3 mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 37-fold, indicating that Asn-473 residue was important to the efficient catalytic function of human E3. Its slightly altered spectroscopic properties implied that small conformational changes could occur in the E3 mutant.

Structural Basis of Functional Conversion of a Floral Repressor to an Activator: A Molecular Dynamics Simulation Study

  • Kang, Suk-Ki;Lee, Ju-Yong;Lee, Myeong-Sup;Seok, Cha-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.408-412
    • /
    • 2008
  • FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) in Arabidopsis are homologous proteins that perform opposite functions: FT is an activator of flowering, and TFL1 is a repressor. It was shown before that change of a single amino acid (His88) of TFL1 to the corresponding amino acid (Tyr) of FT is enough to convert the floral repressor to an activator. However, structural basis of the functional conversion has not been understood. In our molecular dynamics simulations on modified TFL1 proteins, a hydrogen bond present in native TFL1 between the His88 residue and a residue (Asp144) in a neighboring external loop became broken by change of His88 to Tyr. This breakage induced conformational change of the external loop whose structure was previously reported to be another key functional determinant. These findings reveal that the two important factors determining the functional specificities of the floral regulators, the key amino acid (His88) and the external loop, are correlated, and the key amino acid determines the functional specificity indirectly by affecting the conformation of the external loop.

Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

Reduction of Pesticide Residues in the Production of Red Pepper Powder

  • Chun, Mi-Hwa;Lee, Mi-Gyung
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Six organophosphorus, one organochlorine, and three synthetic pyrethroid pesticides were analyzed for their residues during washing and hot-air drying of red peppers conducted in the production of powder. The residue ratio in organophosphorus pesticides was 33% in chlorpyrifos, 31 % in diazinon, 50% in methidathion, 80% in EPN, 28% in fenitrothion, and 60% in profenofos. The ratio in pyrethroids was 109% in cypermethrin, 102% in deltamethrin, and 106% in fenvalerate. That in organochlorine was 56% in ${\alpha}$-endosulfan and 90% in ${\beta}$-endosulfan. The results were greatly different between organophosphorus and pyrethroid pesticides. UV irradiation along with hot-air drying brought about a remarkable reduction of the residues, up to 70% as compared with hot-air drying only. The removal effect was most remarkable in pyrethroids, which are hardly removed by hot-air drying. The color of the pepper was not changed during UV irradiation. The use of oxidizing agents such as hydrogen peroxide or chlorine dioxide during washing did not show a remarkable removal of residues. The residue ratio was not affected whether the pesticide is contaminated artificially or naturally.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

Effects of Additives (Hydrogen Peroxide and Ethylene Glycol) and Temperature on the Leaching of Copper from Chalcopyrite by Sulfuric Acid Solution (황산용액에 의한 황동광으로부터 구리 침출 시 첨가제(과산화수소와 에틸렌글리콜) 및 온도의 영향)

  • Kim, So-Hyun;Ahn, Jong-Gwan;Shin, Shun-Myung;Chung, Kyeong-Woo
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.36-43
    • /
    • 2016
  • The leaching behaviors of copper from chalcopyrite were investigated by sulfuric acid. The leaching of copper was examined according to concentration of sulfuric acid, leaching temperature and addition of hydrogen peroxide and ethylene glycol. The concentrations sulfuric acid and hydrogen peroxide in the leaching solution were increased, the leaching efficiencies of Cu were increased. At $30 -60^{\circ}C$, the leaching efficiency of Cu was increased but it was decreased at $70 - 80^{\circ}C$. The results were due to the increasing of hydrogen peroxide decomposition in the solution above $70^{\circ}C$. In the case of ethylene glycol added at $80^{\circ}C$, the decomposition of hydrogen peroxide was decreased and the leaching efficiency was increased. As a result of SEM analysis of leaching residue after leaching, the residue was found to porous form in the case of the ethylene glycol added and then the leaching efficiency of Cu was increased by the increase of surface area under $60^{\circ}C$ with ethylene glycol.

Quantitative Analysis of Protein-RNA Interaction in A Class I tRNA Synthetase by Saturation Mutagenesis

  • Kim, Sung-Hoon
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.363-367
    • /
    • 1995
  • E. coli methionyl-tRNA synthetase is one of the class I tRNA synthetases. The Tryptophane residue at the position 461 located in the C-terminal domain of the enzyme is a key amino acid for the interaction with the anticodon of $tRNA^{Met}$. W461 was replaced with other amino acids to determine the chemical requirement for the interaction with the anticodon of $tRNA^{Met}$. Saturation mutagenesis at the position 461 generated a total of 12 substitution mutants of methionyl-tRNA synthetase. All the mutants showed the same in vivo stability as the wild-type enzyme, suggesting that the amino acid substitutions did not cause severe conformational change of the protein The mutants containing tyrosine, phenylalanine, histidine and cysteine substitutions showed in vivo activity while all the other mutants did not. The comparison of the in vitro aminoacylation activities of these mutants showed that aromatic ring structure, Van der Waals volume and hydrogen bond potential of the amino acid residue at the position 461 are the major determinants for the interaction with the anticodon of $tRNA^{Met}$.

  • PDF