Browse > Article
http://dx.doi.org/10.5012/bkcs.2008.29.2.408

Structural Basis of Functional Conversion of a Floral Repressor to an Activator: A Molecular Dynamics Simulation Study  

Kang, Suk-Ki (Department of Chemistry, College of Natural Sciences, Seoul National University)
Lee, Ju-Yong (Department of Chemistry, College of Natural Sciences, Seoul National University)
Lee, Myeong-Sup (Department of Biochemistry and Genome Regulation Center, Yonsei University)
Seok, Cha-Ok (Department of Chemistry, College of Natural Sciences, Seoul National University)
Publication Information
Abstract
FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) in Arabidopsis are homologous proteins that perform opposite functions: FT is an activator of flowering, and TFL1 is a repressor. It was shown before that change of a single amino acid (His88) of TFL1 to the corresponding amino acid (Tyr) of FT is enough to convert the floral repressor to an activator. However, structural basis of the functional conversion has not been understood. In our molecular dynamics simulations on modified TFL1 proteins, a hydrogen bond present in native TFL1 between the His88 residue and a residue (Asp144) in a neighboring external loop became broken by change of His88 to Tyr. This breakage induced conformational change of the external loop whose structure was previously reported to be another key functional determinant. These findings reveal that the two important factors determining the functional specificities of the floral regulators, the key amino acid (His88) and the external loop, are correlated, and the key amino acid determines the functional specificity indirectly by affecting the conformation of the external loop.
Keywords
FLOWERING LOCUS T; TERMINAL FLOWER 1; Floral regulators; Molecular dynamics simulation; Hydrogen bond
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Schoentgen, F.; Saccoccio, F.; Jolles, J.; Bernier, I.; Jolles, P. Eur. J. Biochem. 1987, 166, 333   DOI   ScienceOn
2 Ahn, J. H.; Miller, D.; Winter, V. J.; Banfield, M. J.; Lee, J. H.; Yoo, S. Y.; Henz, S. R.; Brady, R. L.; Weigel, D. EMBO J. 2006, 25, 605   DOI   ScienceOn
3 Hanzawa, Y.; Money, T.; Bradley, D. Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 7748
4 Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235   DOI   ScienceOn
5 Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. Science 1999, 286, 1960   DOI   ScienceOn
6 Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1995, 246, 122   DOI   ScienceOn
7 Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327   DOI   ScienceOn
8 Case, D. A.; Cheatham Iii, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J. Comput. Chem. 2005, 26, 1668   DOI   ScienceOn
9 Tsui, V.; Case, D. A. Biopolymers (Nucleic Acid Sciences) 2001, 56, 257
10 Wang, J.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049   DOI   ScienceOn
11 Kardailsky, I.; Shukla, V. K.; Ahn, J. H.; Dagenais, N.; Christensen, S. K.; Nguyen, J. T.; Chory, J.; Harrison, M. J.; Weigel, D. Science 1999, 286, 1962   DOI   ScienceOn
12 Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Science 1997, 275, 80   DOI
13 Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. 1996, 100, 19824   DOI   ScienceOn
14 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684   DOI
15 Coutsias, E. A.; Seok, C.; Dill, K. A. J. Comput. Chem. 2004, 25, 1849   DOI   ScienceOn
16 Coutsias, E. A.; Seok, C.; Dill, K. J. Comput. Chem. 2005, 26, 1663   DOI   ScienceOn