• Title/Summary/Keyword: Hydrogen leak

Search Result 86, Processing Time 0.035 seconds

Improvement Plan for Prevention Regulations to Improve Hazardous Material Safety Management

  • Seongju Oh;Jaewook Lee;Hasung Kong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.346-357
    • /
    • 2023
  • The purpose of this study is to suggest improvement plans for prevention regulations by reflecting the toxicity, fire and explosion effects of hazardous materials factories and surrounding areas using an off-site consequence assessment program. Regarding the effects of the hydrogen cyanide leak accident, which is the 1st petroleum of the 4th class flammable liquid, Areal Locations of Hazardous Atmospheres (ALOHA) program was used to compare and analyze the extent of damage effects for toxicity, overpressure, and radiation. As a result, the toxicity was analyzed to exceed 5km in the area with Acute exposure guideline level (AEGL)-2 concentration or higher, the overpressure was 103m in the range of 1 psi or more, and the radiant heat was analyzed to be 724m in the range of 2kw/m2 or more. Toxicity and radiation affected the area outside the hazardous material storage area, but the overpressure was limited to the inside of the hazardous material storage area. Therefore, we propose to improve the safety management of hazardous materials by conducting a risk assessment for hazardous materials and reflecting the results in internal and external emergency response plans to prepare prevention regulations.

Enhanced Piezoelectric Degradation of Tetracycline Using Single-Atom Cu Anchored on t-BaTiO3

  • Shu Ye;Jing Cheng;Zeda Meng;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.9
    • /
    • pp.422-431
    • /
    • 2024
  • Hydrothermal and ultrasonic processes were used in this study to synthesize a single-atom Cu anchored on t-BaTiO3. The resulting material effectively employs vibration energy for the piezoelectric (PE) catalytic degradation of pollutants. The phase and microstructure of the sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and it was found that the sample had a tetragonal perovskite structure with uniform grain size. The nanomaterial achieved a considerable increase in tetracycline degradation rate (approximately 95 % within 7 h) when subjected to mechanical vibration. In contrast, pure BaTiO3 demonstrated a degradation rate of 56.7 %. A significant number of piezo-induced negative charge carriers, electrons, can leak out to the Cu-doped BaTiO3 interface due to Cu's exceptional conductivity. As a result, a single-atom Cu catalyst can facilitate the separation of these electrons, resulting in synergistic catalysis. By demonstrating a viable approach for improving ultrasonic and PE materials this research highlights the benefits of combining ultrasonic technology and the PE effect.

PAF Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury through Neutrophilic Oxidative Stress

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 1999
  • The role of platelet-activating factor (PAF) was investigated in intestinal ischemia/reperfusion (I/R) induced acute lung injury associated with oxidative stress. To induce acute lung injury following intestinal I/R, superior mesenteric arteries were clamped with bulldog clamp for 60 min prior to the 120 min reperfusion in Sprague-Dawley rats. Acute lung injury by intestinal I/R was confirmed by the measurement of lung leak index and protein content in bronchoalveolar lavage (BAL) fluid. Lung leak and protein content in BAL fluid were increased after intestinal I/R, but decreased by WEB 2086, the PAF receptor antagonist. Furthermore, the pulmonary accumulation of neutrophils was evaluated by the measurement of lung myeloperoxidase (MPO) activity and the number of neutrophils in the BAL fluid. Lung MPO activity and the number of neutrophils were increased (p<0.001) by intestinal I/R and decreased by WEB 2086 significantly. To confirm the oxidative stress induced by neutrophilic respiratory burst, gamma glutamyl transferase (GGT) activity was measured. Lung GGT activity was significantly elevated after intestinal I/R (p<0.001) but decreased to the control level by WEB 2086. On the basis of these experimental results, phospholipase $A_2\;(PLA_2),$ lysoPAF acetyltransferase activity and PAF contents were measured to verify whether PAF is the causative humoral factor to cause neutrophilic chemotaxis and oxidative stress in the lung following intestinal I/R. Intestinal I/R greatly elevated $PLA_2$ activity in the lung as well as intestine (p<0.001), whereas WEB 2086 decreased $PLA_2$ activity significantly (p<0.001) in both organs. LysoPAF acetyltransferase activity, the PAF remodelling enzyme, in the lung and intestine was increased significantly (p<0.05) also by intestinal I/R. Accordingly, the productions of PAF in the lung and intestine were increased (p<0.001) after intestinal I/R compared with sham rats. The level of PAF in plasma was also increased (p<0.05) following intestinal I/R. In cytochemical electron microscopy, the generation of hydrogen peroxide was increased after intestinal I/R in the lung and intestine, but decreased by treatment of WEB 2086 in the lung as well as intestine. Collectively, these experimental results indicate that PAF is the humoral mediator to cause acute inflammatory lung injury induced by intestinal I/R.

  • PDF

Neutrophilic Respiratory Burst Contributes to Acute Lung Leak in Rats Given N-nitroso-N-methylurethane (N-nitroso-N-methylurethane으로 유도된 급성 폐손상에서 호중구에 의한 산화성 스트레스의 역할)

  • Kim, Seong-Eun;Kim, Dug-Young;Na, Bo-Kyung;Lee, Young-Man
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • As is well known that N-nitroso-N-methylurethane (NNNMU) causes acute lung injury (ALI) in experimental animals. And ALI caused by NNNMU is very similar to ARDS in human being in its pathology and progress. In its context, we investigated the pathogenetic mechanism of ARDS associated with oxidative stress by neutrophils in Sprague-Dawley rat model of NNNMU-induced ALI. NNNMU had increased lung weight/body weight ratio (L/B ratio), lung myeloperoxidase (MPO) activity, protein content and number of neutrophils in bronchoalveolar fluid (BALF) compared with those of control rat (p<0.001, respectively). In contrast, the amount of pulmonary surfactant in BALF was decreased by NNNMU (p<0.001). Morphologically, light microscopic examination denoted pathological findings such as formation of hyaline membrane, infiltration of neutrophils and perivascular cuffing in the lungs of NNNMU-treated rats. In addition, ultrastructural changes such as the necrosis of endothelial cells, swelling and vacuolization of lamellar bodies of alveolar type II cells, and the degeneration of pulmonary surfactant were identified after treatment of NNNMU. Very interestingly, cerium chloride electron microscopic cytochemistry showed that NNNMU had increased the production of cerrous-peroxide granules in the lung, which signified the increased production of hydrogen peroxide in the lung. Collectively, we conclude that NNNMU causes acute lung leak by the mechanism of neutrophilic oxidative stress of the lung.

A Study on the Safety Distances for High Pressure-toxic Gases by Specific Accident Scenarios (고압 독성가스 사고발생 시나리오별 안전거리 확보에 관한 연구)

  • Kim, Song-Yi;Hwang, Yong-Woo;Lee, Ik-Mo;Moon, Jin-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Gu-mi hydrogen fluoride leak accident in 2012 was amplified social anxiety for chemical accidents. To relieve these anxieties Off-site Risk Assessment was introduced in 2015. Off-site Risk Assessment is targeted at most chemicals, and most of the high-pressure-toxic gases which are mainly used in high-tech industries such as semi conductor, display, Photovoltaic panels industry are included in the substance of the Off-site Risk Assessment. Since Korean companies occupy a high market share in high-tech industries, high pressure-toxic domestic gas consumption is constantly increasing. Accordingly, it is expected to increase the possibility of accidents. In accordance with the circumstances, this study was to conducted Consequence Analysis(CA) about high pressure-toxic gases those are high demand in domestic. CA was used for ALOHA developed by US EPA & US NOAA and the CA result of Arsine was the largest at 4,700 m. CA results are expected to be utilized for determining the effective Safety distances when high pressure-toxic gas leak.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

Ameliorating Effects of Moxifloxacin on Endotoxin-Induced Acute Lung Injury in Rats (흰쥐에서 내독소로 유도된 급성 폐손상에서 moxofloxacin의 개선효과)

  • Lee, Young-Man;Chae, Whi-Gun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1100-1108
    • /
    • 2011
  • The immunomodulating effects of moxifloxacin seem to be effective in downregulating inflammatory reactions. This presumed effect was tested in endotoxin (ETX)-induced acute lung injury (ALI) in rats. After moxifloxacin treatment (10 mg/kg) of ETX-given rats, lung myeloperoxidase (MPO) activity, bronchoalveolar-lavage (BAL) protein, and the number of neutrophils in the BAL cells were measured. Light and electron microscopic structures were also examined. Electron microscopic $CeCl_3$ histochemistry for the detection of hydrogen peroxide in the lungs and immunohistochemistry of cytosolic phospholipase A2 (cPLA2) in the lung tissues and BAL cells were performed. To examine the expression of TNF${\alpha}$ in the lungs, western blotting was carried out with the lung tissues. ETX had accumulated neutrophils in the lungs, which was followed by lung leak. Oxidative stress occurred, and increased expression of cPLA2 in the lung tissues and BAL cells was observed in the ETX-given rats. Simultaneously, the expression of TNF${\alpha}$ was enhanced by ETX. Moxifloxacin, however, decreased all these parameters, indicating that ALI may have been ameliorated. Moxifloxacin appears to ameliorate ETX-induced ALI partially through the suppression of cPLA2 in the lungs of rats.

Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent (유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가)

  • Lee, Jin-Wook;Cho, Chang-hyun;Kim, Sung-Gye;Ko, Young-Gun;Kim, Dong-Ju
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • For hydrogen-vehicle applications (air pressure control valve housing, APCVH), an investigation was conducted to determine how micro-defects in a high- pressure die-casted Al alloy (industrial code: ALDC12) could be controlled by means of a post-treatment using an organic-based impregnation solution in order to improve the air- tightness of the die-casted Al sample. Two different impregnation solutions were proposed and its test results were compared to a imported product from Japan with respect to the processing variables used. A structural investigation of the components under study was conducted by means of computer tomography and 3D X-ray micro-CT. These observations revealed that the use of the impregnation treatment to seal micro-defects led to highly significant and beneficial changes which were attributed mainly to interconnections among inherent micro-pores. A leak test after impregnation revealed that the performance improvement rate of the die-casted Al sample was ~70% for INNO-01. Therefore, the developed impregnation solutions offer an effective strategy to control the micro-defects found in various vehicle parts via die-casting.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Role of Group II Phospholipase $A_2$ in the Pulmonary Oxidative Stress of the Acute Lung Injury Induced by Gut Ischemia-Reperfusion (장의 허혈-재관류로 유도된 급성 폐손상에서 산화성 스트레스에 관여하는 group II phospholipase $A_2$의 역할)

  • Jheon, Sang-Hoon;Kim, Keun;Lee, Sang-Cheol;Kim, Seong-Eun;Lee, Young-Man;Lee, Jong-Tae
    • Journal of Chest Surgery
    • /
    • v.35 no.7
    • /
    • pp.501-510
    • /
    • 2002
  • Background: The various pathogeneses of acute respiratory distress syndrome have been suggested but not established yet. In the present study, the role of group II phospholipase $A_2$($PLA_2$) in the pathogenesis of gut ischemia-reperfusion(I/R) induced acute lung injury (ALI), especially in the pulmonary oxidative stress with infiltration of neutrophils was investigated. Material and Method: To induce ALI, reperfusion of mesentery was done for 120 min after clamping of superior mesenteric artery for 60 min in Sprague-Dawley rats that weighed about 300g. To exmaine the role of group II $PLA_2$ in ALI, especially endothelial injury associated with the action of neutrophils, lung myeloperoxidase activity, lung leak index, bronchoalveolar lavage fluid protein were measured, and pulmonary $PLA_2$ activity changes in gut I/R were also measured. The role of group II $PLA_2$in the neutrophilic generation of free radicals was assessed by inhibiting group II $PLA_2$ with rutin, manoalide and scalaradial. Furthermore, to verify the oxidative stress in the lung, histologic and free radical detecting cytochemical electron microscopy were done. Result: After reperfusion, ALI was developed with accumulation of neutrophils in the lung, which was confirmed by the increase of myeloperoxidase activity, lung leak index and bronchoalveolar lavage protein (p<0.001). The pulmonary and intestinal group II $PLA_2$ activities significantly increased after gut I/R which were reversed by rutin(p<0.001). In vitro, cytochrome-c reduction assay denoted the inhibitory effects of rutin, scalaradial and manoalide on the production of free radicals from isolated human neutrophils. Histologically, neutrophilic accumulation and pericapillary edema in the lung after gut I/R was detected by light microscopy which was suppressed by rutin. In $CeCl_3$ cytochemical electron microscopy, the increased production of hydrogen peroxide in the lung after gut I/R was confirmed and also the production of hydrogen peroxide was decreased by rutin. Conclusion: On the basis of these experimental results, the inhibition of group II $PLA_2$ seemed to mitigate gut I/R-induced ALI by suppressing the production of free radicals from the infiltrated neutrophils. Collectively, group II $PLA_2$ seems to play a crucial role in gut I/R-induced ALI by neutrophilic oxidative stress.