Neutrophilic Respiratory Burst Contributes to Acute Lung Leak in Rats Given N-nitroso-N-methylurethane

N-nitroso-N-methylurethane으로 유도된 급성 폐손상에서 호중구에 의한 산화성 스트레스의 역할

  • Kim, Seong-Eun (Department of Biology, Youngnam University) ;
  • Kim, Dug-Young (Department of Physiology, Catholic University of Daegu) ;
  • Na, Bo-Kyung (Department of Physiology, Catholic University of Daegu) ;
  • Lee, Young-Man (Department of Physiology, Catholic University of Daegu)
  • 김성은 (영남대학교 이과대학 생물학과) ;
  • 김덕영 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 나보경 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 이영만 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2003.03.01

Abstract

As is well known that N-nitroso-N-methylurethane (NNNMU) causes acute lung injury (ALI) in experimental animals. And ALI caused by NNNMU is very similar to ARDS in human being in its pathology and progress. In its context, we investigated the pathogenetic mechanism of ARDS associated with oxidative stress by neutrophils in Sprague-Dawley rat model of NNNMU-induced ALI. NNNMU had increased lung weight/body weight ratio (L/B ratio), lung myeloperoxidase (MPO) activity, protein content and number of neutrophils in bronchoalveolar fluid (BALF) compared with those of control rat (p<0.001, respectively). In contrast, the amount of pulmonary surfactant in BALF was decreased by NNNMU (p<0.001). Morphologically, light microscopic examination denoted pathological findings such as formation of hyaline membrane, infiltration of neutrophils and perivascular cuffing in the lungs of NNNMU-treated rats. In addition, ultrastructural changes such as the necrosis of endothelial cells, swelling and vacuolization of lamellar bodies of alveolar type II cells, and the degeneration of pulmonary surfactant were identified after treatment of NNNMU. Very interestingly, cerium chloride electron microscopic cytochemistry showed that NNNMU had increased the production of cerrous-peroxide granules in the lung, which signified the increased production of hydrogen peroxide in the lung. Collectively, we conclude that NNNMU causes acute lung leak by the mechanism of neutrophilic oxidative stress of the lung.

급성호흡곤란증후군 (acute respiratory distress syndrome)을 포함한 급성폐손상의 기전을 산화성스트레스와 연관하여 알아보기 위하여 본 연구를 시행하였다. N-nitroso-N-methylurethane (NNNMU)은 실험동물에 있어서 사람에서 보이는 ARDS와 유사한 병리학적인 소견을 보이므로 ARDS의 모델로 사용된다. 본 연구에서는 흰쥐에서 NNNMU로 급성폐손상을 유도한 뒤 이를 Lung weight/Body weight ratio, 폐포세척액(BAL)내의 단백함량을 측정하여 확인하고, 동시에 호중구의 침윤에 의한 산소기형성, 이에 따른 산화성스트레스를 확인하기 위하여 BAL 내의 호중구수의 산정 및 폐장의 MPO 활성도를 측정하였다. 동시에 광학현미경, 전자현미경 및 세포화학적 전자현미경법을 이용하여 호중구에 의한 급성폐손상, 호중구의 침윤 및 미세구조의 변화 및 산소기의 생성을 확인하였다. 대조군에 비하여 NNNMU를 투여한 흰쥐에서는 BAL 내의 단백질이 증가하고 BAL 내의 호중구의 증가, 폐장의 MPO 활성도의 증가로 호중구의 침윤이 증가함을 관찰하였다. 광학현미경상 호중구의 침윤, 폐포내 호중구의 유입 및 vascular cuffing 등이 관찰되었다. 전자현미경 소견상 제2형 폐포세포는 산화성 스트레스의 전형적 소견을 보이고 조직의 손상은 호중구에 의한 손상으로 생각되었으며 세포화학적 전자현미경법으로 산소기의 생성이 증가됨을 확인하였다. 이러한 결과들을 종합할 때 NNNMU에 의한 급성폐손상은 호중구의 산소기 생성에 의한 산화성스트레스에 의한 것으로 생각되었다.

Keywords

References

  1. Ashbaugh DG, Bigelow DG: Acute respiratory distress in adults. Lancet 2: 319 323, 1967
  2. Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37 : 911 917, 1959 https://doi.org/10.1139/o59-099
  3. Brown RE, Jarvis KL, Hyland KJ: Protein measurement using bicinchoninic acid: elimination of interfering substance. Anal Biochem 180: 136 139, 1989 https://doi.org/10.1016/0003-2697(89)90101-2
  4. Coalson JJ, King RJ, Winter WT, Prihoda TJ, Anzueto AR, Peters JI, Johanson, Tr WG: $O_{2}$ and pnewnonia induced lung injury. I. Pathological and morphometric studies. Appl Physiol 67: 346 356, 1989 https://doi.org/10.1152/jappl.1989.67.1.346
  5. Connelly KG, Repine JE: Markers for predicting the development of acute respiratory distress syndrome. Ann Rev Med 48 : 429 445, 1997 https://doi.org/10.1146/annurev.med.48.1.429
  6. Cruz WS, Moxley MA, Corbet JA, Longmore WJ: Inhibition of nitric oxide synthase attenuates NNNMU induced alveolar injury in vivo. Am J Physiol 273 (Lung Cell. Mol. Physiol 1997; 17): L1167 1173
  7. Dana R, Malech HL, Levy R: The requirement for phospholipase $A_{2}$ for activation of the assembled NADPH oxidase in human neutrophils. Biochem J 297 : 217 223, 1994 https://doi.org/10.1042/bj2970217
  8. Delclaux C, Rezaiguia Delclaux S, Delacourt C, Brun Buisson C, Lafuma C, Harf A: Alveolar neutrophils in endotoxin induced and bacteria induced acute lung injury in rats. Am J physiol 273 : L104 L112, 1997
  9. Furue S, Kuwabara K, Mikawa K, Nishina K, Shiga M, Maekawa N, Ueno M, Chikajawa Y, Ono T, Hori Y, Matsukawa A, Yoshinaga M, Obara H: Crucial role of group II phospholipase $A_{2}$ in oleic acid induced acute lung injury in rabbits, Am J Respir Crit Care Med 160 1292 1302, 1999 https://doi.org/10.1164/ajrccm.160.4.9812042
  10. Goldblwn SE, Wu KM, Jay M: lung myeloperoxidase as a measurement of leukostasis in rabbits, J Appl Physiol 59 : 1978 1985, 1985 https://doi.org/10.1152/jappl.1985.59.6.1978
  11. Halliwell B, Gutteridge JM: Free radicals in biology and medicine, Clarendon Press, Oxford 2nd Edition pp, 18 19, 1989
  12. : Effect of exogenous surfactant instillation on experimental acute lung injury, J Appl Physiol 66 : 1846 1851, 1989 https://doi.org/10.1152/jappl.1989.66.4.1846
  13. Hess HH, Derr JE: Assay of organic and inorganic phosphorus in the 0,1 5 nanomolar range, Anal Biochem 63 607 613, 1975 https://doi.org/10.1016/0003-2697(75)90388-7
  14. Hobson J, Wright J, Churg A: Histochemical evidence for generation of active oxygen species on the apical surface of cigarette smoke exposed tracheal explants, Am J Pathol 139 : 573 580, 1991
  15. Hybertson BM, Lee YM, Repine JE: Phagocytes and acute lung injury: Dual roles for interleukin 1, Ann NY Acad Sci 843 : 266 273, 1997
  16. Kim DK, Fukuda T, Thomson BT, Cockrill B, Hales C, Bonventre JV: Bronchoalveolar lavage fluid phospholipase $A_{2}$ activities are increased in human adult respiratory distress syndrome, Am J Physiol 269: L109 L118, 1995
  17. Lee YM, Hybertson BM, Cho HG, Terade LS, Cho D, Repine AJ, Repine JE: Platelet activating factor contributes to acute lung leak in rats given interleukin 1 intratracheally, Am J Physiol (Lung Cell, Mol. Physiol.) 279 : L75 L80, 2000
  18. Lee YM, Hybertson BM, Terada LS, Repine AJ, Cho HG, Repine JE: Mepacrine decreases lung leak in rats given interleukin 1 intratracheally, Am J Respir Crit Care Med 155 : 1624 1628, 1997 https://doi.org/10.1164/ajrccm.155.5.9154867
  19. Lee YM, Park Y: PAF contributes to intestinal ischemia/reperfusion induced acute lung injury through neutrophilic oxidative stress, Korean J Physiol Phannacol 3 : 405 414, 1999
  20. Lee YM, Park YY, Koh YS: Effect of high dose of dexamethasone on PL$A_{2}$, GGT activity and lung morphology in NNNMU induced ARDS rats, Tuberculosis and Respiratory Diseases 43 : 925 935, 1996, (Korean) https://doi.org/10.4046/trd.1996.43.6.925
  21. Leff JA, BMr JW, Kirkman JM, Bodman ME, Shanley PF, Cho OJ, Ostro MJ, Repine JE: Liposome entrapped PGE, posttreatment decreases IL 1$\alpha$ induced neutrophil accumulation and lung leak in rats, J Appl Physiol 76 151 157, 1994 https://doi.org/10.1152/jappl.1994.76.1.151
  22. Lewis JF, Ikegami M, Jobe AH: Altered surfactant function and metabolism in rabbits with acute lung injury, J Appl Physiol 69 : 2303 2310, 1990 https://doi.org/10.1152/jappl.1990.69.6.2303
  23. Lewis JF, Jobe AH: Surfactant and the adult respiraory distress syndrome, Am Rev Respir Dis 147 : 218 233, 1993 https://doi.org/10.1164/ajrccm/147.1.218
  24. Liau DF, Barret CR, Loomis Bell AL, Ryan SF: Functional abnormalities of lung surfactant in experimental acute lung injury in the dog, Am Rev Respir Dis 136 : 395 401, 1987 https://doi.org/10.1164/ajrccm/136.2.395
  25. Martensson A, Jain A, Frayer W, Meister A: A glutathione metabolism in the lung : inhibition of its synthesis leads to lamellar body and mitochondrial defects, Proc Natl Acad Sci USA 86 : 5296 5300, 1989 https://doi.org/10.1073/pnas.86.14.5296
  26. Martensson J, Jain A, Stole E, Frayer W, Auld PM, Meister A: Inhibition of glutathione synthesis in the newborn rat : A model for endogenously produced oxidative stress, Proc Natl Acad Sci USA 88 : 9360 0364, 1991 https://doi.org/10.1073/pnas.88.20.9360
  27. Matthay MA, Rosen GO: Acid aspiration lung injury: New insights and therapeutic options, Am J Respir Crit Care Med 154 : 277 278, 1996 https://doi.org/10.1164/ajrccm.154.2.8756794
  28. Nagase T, Ishii S, Kwne K, Uozumi N, Izumi T, Ouchi Y, Shimizu T: Platelet activating factor mediates acid induced lung injury in generically engineered mice, J Clin Invert 104 : 1071 1076, 1990
  29. Nalcos G, Kitsiouli EI, Tsangaris I, Lekka ME: Bronchoalveolar lavage fluid characteristics of early intermediate and late phases of ARDS, Alterations in leukocytes, proteins, PAF and surfactant components, Intensive Care Med 24: 296 303, 1998 https://doi.org/10.1007/s001340050571
  30. Ono S, Voelkel NF: PAF antagonists inhibit monocrotalin induced lung injury and pulmonary hypertension, J Appl Physiol 71: 2483 2492, 1991 https://doi.org/10.1152/jappl.1991.71.6.2483
  31. Repine, J.E.: Interleukin 1 mediated acute lung injury and tolerance to oxidative injury, Environ Health Perspec 102 (Suppl 10): 75 78, 1994
  32. Richardson P, Bose CL, Dayton V, Carlstrom JR: Cardiopulmonary function of cats with respiratory distress induced by N nitroso N methylurethane. Pediatr, Pulmonol 2 : 296 302, 1986 https://doi.org/10.1002/ppul.1950020509
  33. Ryan SF, Liau OF, Bell ALL, Hashim SA, Barret CR: Correlation of lung compliance and quantities of surfactant phospholipid after acute alveolar injury from N nitroso N methylurethane in the dog. Am Rev Respir Dis 123 : 200 204, 1981
  34. Repine JE: Scientific perspectives on adult respiratory distress syndrome, Lancet 339 : 466 469, 1992 https://doi.org/10.1016/0140-6736(92)91067-I
  35. Slonim AD, Dalton HJ: Therapeutic use of a group II phospholipase $A_{2}$ inhibitor in acute respiratory distress syndrome: time is ofthe essence, Crit Care Med 29 : 719 727, 2001 https://doi.org/10.1097/00003246-200104000-00004
  36. Terada LS, Domish J, Shenley PF, Leff JA, Anderson BO, Repine JE: Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia reperfusion, Am J Physiol 263 : L394 L401, 1992
  37. Terada LS, Mahr NN, Jacobson ED: Nitric oxide decrease lung injury after intestinal ischemia, J Appl Physiol 81 2456 2460, 1996 https://doi.org/10.1152/jappl.1996.81.6.2456
  38. Vadas P, Pruzanski W, Stefanski E: Extracellular phospholipase $A_{2}$ secretion is a common effector pathway of interleukin 1 and tumor necrosis factor action, Immunol Letter 28: 187 193, 1991 https://doi.org/10.1016/0165-2478(91)90002-R
  39. Van HeIden HPM, Kuijpers WC, Steenvoorden 0, Go C, Bruijnzeel PLB: Intratracheal aerozolization of endotoxin (LPS) in the rat: A comprehensive animal model to study adult (acute) respiratory distress syndrome, Exp lung Res 23 : 297 316, 1997 https://doi.org/10.3109/01902149709039228
  40. Ware LB, Metthay MA: Medical progress: The acute respiratory distress syndrome, N Eng J Med 342 : 1343 1349, 2000
  41. Welboum CRB, Paterson IS, Valeri CR, Shepro D, Hetchman HB: Pathophysiology of ischemia reperfusion injury: Central role of the neutrophil. Br J Surg 78 : 651 655, 1991 https://doi.org/10.1002/bjs.1800780607
  42. Zilberberg MD, Epstein SK: Acute lung injury in the medical ICU: Comorbid conditions, age, etiology and hospital outcome, Am J Respir Crit Care Med 157 : 1159 1164, 1998 https://doi.org/10.1164/ajrccm.157.4.9704088