• Title/Summary/Keyword: Hydrogen isotope effect

Search Result 42, Processing Time 0.024 seconds

Study on the Nonlinear Interaction of Laser with Plasma -Detection of Second Harmonic Light and Brillouin Scattering Light by Means of Spectroscopic Technique- (레이저와 프라즈마와의 비선형상오작용에 관한 연구 -분광법에 의한 제 2고주파와 Brillouin 산람광의 검출-)

  • Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.173-180
    • /
    • 1984
  • The spectra of scattering light fromlaser-produced plasma near its fundamental and second harmonic wavelength were observed respectively by means of spectroscopic technique. The experimental results and the generation mechanism of nonlinear effects such as the second garmonics and the brillouin scattering were analysed theoretically. The spectra of reflected laser light became wider than that of incident laser light. And the peak of spectrum of reflected light shifted to red-side from that of incident light. The second harmonic light is generated from the nonlinear interaction of the incident laser light and the electron plasma wave excited in resonance region by the oblique incidence of laser light to the plasma. The Brillouin backscattering from laser-produced plasmas of hydrogen and deuterium has shown an isotope effect in the red-side region of the generated second harmonic light. This isotope shift is explained by the parametric instability at the cutoff (resonance) region using frequency-and phase-matching conditions of the waves.

  • PDF

Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2306-2310
    • /
    • 2011
  • The nucleophilic substitution reactions of diethyl thiophosphinic chloride with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 55.0 $^{\circ}C$. The values of deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) invariably increase from secondary inverse ($k_H/k_D$ < 1) to primary normal (kH/kD > 1) as the nucleophiles change from the strongly basic to weakly basic anilines. The secondary inverse with the strongly basic anilines and primary normal DKIEs with the weakly basic anilines are rationalized by the gradual transition state (TS) variation from a predominant backside attack, via invariably increasing the fraction of a frontside attack, to a predominant frontside attack, in which the reaction mechanism is a concerted $S_N2$ pathway. A frontside attack involving a hydrogen bonded, four-center-type TS is substantiated by the primary normal DKIEs.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.

Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1879-1884
    • /
    • 2012
  • The kinetic studies on the reactions of dipropyl chlorophosphate (3O) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) have been carried out in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; $k_H/k_D$) are primary normal ($k_H/k_D$ = 1.09-1.01) with the strongly basic anilines while secondary inverse ($k_H/k_D$ = 0.74-0.82) with the weakly basic anilines. The steric effects of the two ligands on the rates are extensively discussed for the anilinolyses of the ($R_1O$)($R_2O$)P(=O or S)Cl-type chlorophosphates and chlorothiophosphates. A concerted mechanism is proposed with a frontside nucleophilic attack involving a hydrogen-bonded four-center-type transition state for the strongly basic anilines and with a backside attack transition state for the weakly basic anilines on the basis of the DKIEs, primary normal and secondary inverse with the strongly and weakly basic anilines, respectively.

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Hydrogen Perm-Selectivity Properties of the Pd-Ni-Ag Alloy Hydrogen Separation Membranes with Various Surface Nickel Composition (표면 니켈 조성에 따른 팔라듐-니켈-은 합금 수소분리막의 수소투과선택 특성)

  • Lim, Da-Sol;Kim, Se-Hong;Kim, Do-Hui;Cho, Seo-Hyun;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.277-290
    • /
    • 2018
  • In this study, Pd-Ni-Ag alloy hydrogen separation membranes were fabricated by Pd/Ag/Pd/Ni/Pd multi-layer sputter deposition on the modified MIM(Metal Injection Molding)-PSS(Porous Stainless Steel) support and followed heat treatment. Nickel, used as an alloying element in Pd alloy membranes, is inexpensive and stable material in a hydrogen isotope environment at high temperature up to 1123 K. Hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes is affected not only by composition of membrane films but also by other factors such as surface properties of PSS support, microstructure of membrane films and inter-diffused impurities from PSS support. In order to clarify the effect of surface Ni composition on hydrogen perm-selectivity of Pd-Ni-Ag alloy membranes, the other effects were significantly minimized by the formation of dense and homogeneous Pd-Ni-Ag alloy membranes. Hydrogen permeation test showed that hydrogen permeability decreased from $7.6{\times}10^{-09}$ to $1.02{\times}10^{-09}mol/m{\cdot}s{\cdot}Pa^{0.5}$ as Ni composition increased from 0 to 16 wt% and the selectivity for $H_2/N_2$ was infinite.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Theoretical Study of the Isotope Effect for the Reaction Cl+HD at the High Energy Using Pairwise Energy Model (Pairwise Energy Model을 이용한 높은 충돌에너지에서 Cl+HD 반응의 동위원소 효과에 대한 이론적 연구)

  • Ju-Beom Song
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.191-198
    • /
    • 2003
  • The pairwise energy model (PEM) assumes that the cross section for the reaction cross section for the reaction A+BC$\{leftrightarrow}$B+C, where B and C are isotopes of hydrogen, depends on only the pairwise relative energy Es between A and B. Until now, the PEM has been used to interpret theoretically the isotope effect for the reactions such as $O(^3P)+HD,\;Ar^++(H_2,\;D_2,and\;HD)$. In this paper we carry out extensive quasiclassical trajectory calculations for the three possible reactions $Cl+H_2$ and HD and show that the PEM works very well at high energy. In particular we are able to accurately predict the intramolecular isotope effect at high energy for the reaction of Cl+HD using only the cross section data for $Cl+H_2$. To understand that the PEM works so well at high energy, the internal energy distributions for the products are examined. The distributions for three reactions are different at a fixed relative collision energy E but are approximately same at a fixed pairwise energy Es. This suggests that the PEM works very well at high energy. We believe the conclusions reached here will apply to other A+BC systems.

Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.663-669
    • /
    • 2012
  • The nucleophilic substitution reactions of dibutyl chlorophosphate (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The obtained deuterium kinetic isotope effects (DKIEs; kH/kD) are secondary inverse ($k_H/k_D$ = 0.86-0.97) with the strongly basic anilines while primary normal ($k_H/k_D$ = 1.04-1.10) with the weakly basic anilines. The DKIEs, steric effects of the two ligands, activation parameters, cross-interaction constants, variation trends of the kH/kD values with X, and mechanism are discussed for the anilinolyses of the nine ($R_1O$)($R_2O$)P(=O)Cl-type chlorophosphates. A concerted mechanism is proposed with a backside nucleophilic attack transition state for the strongly basic anilines and with a frontside attack involving a hydrogen-bonded four-center-type transition state for the weakly basic anilines on the basis of the magnitudes, secondary inverse and primary normal, and variation trends of the $k_H/k_D$ values with X.

Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile

  • Adhikary, Keshab Kumar;Lumbiny, Bilkis Jahan;Dey, Shuchismita;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2628-2632
    • /
    • 2011
  • The nucleophilic substitution reactions of Y-O-aryl phenyl phosphonochloridothioates with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from an extremely large secondary inverse ($k_H/k_D$ = 0.439; min) to a primary normal ($k_H/k_D$ = 1.34; max) as both substituents of nucleophile (X) and substrate (Y) change from electron-donating to electron-withdrawing. These results are opposite to the DKIEs on Y-O-aryl methyl phosphonochloridothioates, and can be rationalized by the gradual transition state (TS) variation from backside to frontside attack. The trigonal bipyramidal pentacoordinate TS is proposed for a backside attack, while the hydrogen-bonded, four-center-type TS is proposed for a frontside attack. The negative values of the cross-interaction constants (${\rho}_{XY(H)}$ = -0.38 for $XC_6H_4NH_2$ and ${\rho}_{XY(D)}$ = -0.29 for $XC_6H_4ND_2$) indicate that the reactions proceed by a concerted $S_N2$ mechanism.