Browse > Article
http://dx.doi.org/10.5012/jkcs.2003.47.3.191

Theoretical Study of the Isotope Effect for the Reaction Cl+HD at the High Energy Using Pairwise Energy Model  

Ju-Beom Song (Department of Chemical Education, Kyungpook National University)
Publication Information
Abstract
The pairwise energy model (PEM) assumes that the cross section for the reaction cross section for the reaction A+BC$\{leftrightarrow}$B+C, where B and C are isotopes of hydrogen, depends on only the pairwise relative energy Es between A and B. Until now, the PEM has been used to interpret theoretically the isotope effect for the reactions such as $O(^3P)+HD,\;Ar^++(H_2,\;D_2,and\;HD)$. In this paper we carry out extensive quasiclassical trajectory calculations for the three possible reactions $Cl+H_2$ and HD and show that the PEM works very well at high energy. In particular we are able to accurately predict the intramolecular isotope effect at high energy for the reaction of Cl+HD using only the cross section data for $Cl+H_2$. To understand that the PEM works so well at high energy, the internal energy distributions for the products are examined. The distributions for three reactions are different at a fixed relative collision energy E but are approximately same at a fixed pairwise energy Es. This suggests that the PEM works very well at high energy. We believe the conclusions reached here will apply to other A+BC systems.
Keywords
Pairwise Energy; Isotope Effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Budenhozer F. E.; Hu S. C.; Jeng D. C.; Gislason E. A.J. Chem. Phys. 1988, 89, 1958.   DOI
2 Song J. B.; Gislason E. A. Chem. Phys. 1996, 202, 1.   DOI   ScienceOn
3 Dong K.; Gislason E. A.; Sizun M. Chem. Phys. 1994,189, 143.
4 Bookin D.; Constantine C. A.; Root J. W; MuckermanJ. T. Chem. Phys. Lett. 1983, 101, 23.   DOI   ScienceOn
5 Lin K. C.; CotterR. J.; Koski W. S. J. Chem. Phys.1974, 61, 905.   DOI
6 Song J. B. Chem. Phys. 2002, 285, 255.   DOI   ScienceOn
7 Riederer D. E.; Jorgensen A. D.; Gislason E. A. J.Chem. Phys. 1991, 94, 5980.   DOI
8 Connally C. M.; Gislason E. A. Chem. Phys. Letters1972, 14, 103.   DOI   ScienceOn
9 Song J. B.; Gislason E. A. Chem. Phys. 1997, 214, 23.   DOI   ScienceOn
10 Light J. C.; Lin J. J. Chem. Phys. 1965, 43, 3209.   DOI
11 Wright J. S.; Gray S. K.; Porter R. N. J. Phys. Chem.1979, 83, 1033.   DOI
12 Gentry W. R.; Gislason E. A.; Mahan B. H.; Tsao C.W. J. Chem. Phys. 1968, 49, 3058.   DOI
13 Dressler R. A.; Salter R. H.; Murad E. J. Chem. Phys.1993, 99, 1159.   DOI   ScienceOn
14 Gislason E. A.; Sizun M. Chem. Phys. Lett. 1989, 158,102.   DOI   ScienceOn
15 Kendall G. M. J. Chem. Phys. 1973, 58, 3523.   DOI
16 Georgiadis R.; Armentrout P. B. J. Phys. Chem. 1988,92, 7060.   DOI
17 Schultz R. H.; Armentrout P. B. J. Chem. Phys. 1993,99, 1159.   DOI   ScienceOn
18 Yuan J. M.; Micha D. A. J. Chem. Phys. 1976, 64, 1032.   DOI
19 Armentrout P. B. Int. Rev. Phys. Chem. 1990, 9, 115.   DOI
20 Malcolme-Laws, D. J. Chem. Phys. 1972, 57, 5522.
21 Henglein A.; Lacmann K.; Knoll B. J. Chem. Phys.1965, 43, 1048.   DOI
22 Glenewinkel-Meyer T.; Hoppe U.; Kowalski A.;Ottinger C.; Rabenda D. Int. J. Mass Spectrom. IonProcesses 1995, 144, 167.   DOI   ScienceOn
23 Song J. B.; Gislason E. A. Chem. Phys. Lett. 1996, 259, 91.   DOI   ScienceOn
24 Kosmas A.; Gislason E. A.; Jorgensen A. D. J. Chem.Phys. 1981, 75, 2884.   DOI
25 Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1986, 85, 6380.   DOI
26 Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,90, 118.   DOI
27 Hershbach D. R. Appl. Opt. Suppl. 1965, 2, 128.
28 Sizun M.; Gislason E. A. J. Chem. Phys. 1989, 91, 4603.   DOI
29 Song J. B.; Gislason E. A. Chem. Phys. 1996, 212, 259.   DOI   ScienceOn
30 Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. 1989, 133, 251.   DOI   ScienceOn
31 Baer M.; Amiel S. J . Am. Chem. Soc. 1969, 91, 6547.   DOI
32 Armentrout P. B. In Isotope Effects in Gas-PhaseChemistry; ed. Kaye J. A.; ACS Symposium #502: Washington,1992; p. 194.
33 Chiang M. M.; Mahan B. H.; Maltz C. J. Chem. Phys.1972, 57, 5114.   DOI
34 Song J. B.; Gislason E. A. J. Chem. Phys. 1996, 104,5834.   DOI
35 Light J. C.; Chan S. J. Chem. Phys. 1969, 51, 1008.   DOI
36 Hu H.; Hase W. L.; Pirraglia T. J. Comput. Chem.1991, 12, 1014.   DOI
37 Hillenbrand E. A.; Main D. .J.; Jorgensen A. D.; GislasonE. A. J. Phys. Chem. 1984, 88, 1358.   DOI
38 Song J. B.; Gislason E. A. Chem. Phys. 1998, 237, 159.   DOI   ScienceOn
39 Bhalla K. C.; Sathyamurthy N. Chem. Phys. Lett. 1989,160, 437.   DOI   ScienceOn
40 Sizun M.; Parlant G.; Gislason E. A. Chem. Phys. Lett.1987, 139, 1.   DOI   ScienceOn
41 Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1972, 268, 1613.
42 Truhlar D. G.; Dixon D. A. In Atom-molecule collisiontheory; ed. Bernstein R. B.; Plenum: New York, 1979;p. 595.
43 Gislason E. A.; Sizun M. J. Phys. Chem. 1991, 95,8462.   DOI
44 Muckerman J. T. In Theoretical Chemistry; Vol. 6A, ed.Henderson D.; Academic Press: New York, 1981; p. 1.
45 Malcolme-Laws D. J. J. Chem. Soc. Faraday Trans. 1975, 71, 1183.   DOI
46 Fayeton J. A.; Brenot J; Durup-Ferguson C. M.; BaratM. Chem. Phys. 1989, 133, 259.   DOI   ScienceOn
47 Stowe G. F.; Schultz R. H.; Wright C. A.; ArmentroutP. B. Int. J. Mass Spectrom. Ion Processes 1990, 100,177.   DOI   ScienceOn
48 Muckerman J. T. J. Chem. Phys. 1972, 57, 3388.   DOI
49 Gillen K. T.; Mahan G. H.; Winn J. S. J. Chem. Phys.1973, 59, 6380.   DOI
50 Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1989,84, 4862.   DOI
51 George T. F.; Suplinkas R. J. J. Chem. Phys. 1971, 54,1046.   DOI
52 Elkind K. L.; Armentrout P. B. J. Chem. Phys. 1987, 86, 6420.
53 Persky A. J. Chem. Phys. 1977, 66, 2832.
54 Light J. C. Discuss. Faraday Soc. 1967, 44, 14.   DOI
55 Song J. B.; Gislason E. A. J. Chem. Phys. 1993, 99,5117.   DOI   ScienceOn
56 Song J. B.; Gislason E. A.; Sizun M. J. Chem. Phys.1995, 102, 4885.   DOI   ScienceOn
57 Song J. B.; Gislason E. A. J. Phys. Chem. 1996, 100,195.   DOI   ScienceOn
58 Sizun M.; Gislason E. A.; Parlant G. Chem. Phys.1986, 107, 311.   DOI   ScienceOn
59 Gislason E. A.; Sizun M. Chem. Phys. 1989, 133, 237.   DOI   ScienceOn
60 Suplinskas R. J. J. Chem. Phys. 1968, 49, 5046.   DOI
61 Malcolme-Laws D. J. Radiochim. Acta. 1979, 26, 71.
62 Gonzalez M.; Aguilar A.; Gilibert M. Chem. Phys.1989, 131, 347.   DOI   ScienceOn
63 Gillen K. T.; Mahan B. H.; Winn J. S. Chem. Phys.Lett. 1973, 22, 344.   DOI   ScienceOn
64 Song J. B.; Gislason E. A. J. Chem. Phys. 1995, 103,8884.   DOI
65 Gonzalez M.; Gilibert M.; Aguilar A.; Sayos R. J.Chem. Phys. 1993, 98, 2927.   DOI   ScienceOn
66 Gislason E. A.; Mahan B. H.; Tsao C. W.; Werner A.S. J. Chem. Phys. 1969, 50, 142.   DOI
67 Hase W. L.; Duchovic R. J.; Hu H.; Lim K. F.; Lu D.H.; Swany K. N.; VandelLinde S. R.; Wolf R. J.VENUS, obtained directly from Professor Hase.