DOI QR코드

DOI QR Code

Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile

  • Received : 2011.06.07
  • Accepted : 2011.06.24
  • Published : 2011.08.20

Abstract

The nucleophilic substitution reactions of Y-O-aryl phenyl phosphonochloridothioates with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are kinetically investigated in acetonitrile at $55.0^{\circ}C$. The deuterium kinetic isotope effects (DKIEs) invariably increase from an extremely large secondary inverse ($k_H/k_D$ = 0.439; min) to a primary normal ($k_H/k_D$ = 1.34; max) as both substituents of nucleophile (X) and substrate (Y) change from electron-donating to electron-withdrawing. These results are opposite to the DKIEs on Y-O-aryl methyl phosphonochloridothioates, and can be rationalized by the gradual transition state (TS) variation from backside to frontside attack. The trigonal bipyramidal pentacoordinate TS is proposed for a backside attack, while the hydrogen-bonded, four-center-type TS is proposed for a frontside attack. The negative values of the cross-interaction constants (${\rho}_{XY(H)}$ = -0.38 for $XC_6H_4NH_2$ and ${\rho}_{XY(D)}$ = -0.29 for $XC_6H_4ND_2$) indicate that the reactions proceed by a concerted $S_N2$ mechanism.

Keywords

References

  1. Hudson, R. F. Structure and Mechanism in Organophosphorus Chemistry; Academic Press: London, 1965; Chapter 3.
  2. Thatcher, G. R. J.; Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99. https://doi.org/10.1016/S0065-3160(08)60019-2
  3. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8.
  4. Omakor, J. E.; Onyido, I.; vanloon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  5. Tsang, J. S.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2003, 125, 7602. https://doi.org/10.1021/ja034979a
  6. Kirby, A. J.; Lima, M. F.; da Silva, D.; Nome, F. J. Am. Chem. Soc. 2004, 126, 1350. https://doi.org/10.1021/ja038428w
  7. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49. https://doi.org/10.1016/S0065-3160(05)40002-7
  8. Kumara Swamy, K. C.; Satish Kumar, N. Acc. Chem. Res. 2006, 39, 324. https://doi.org/10.1021/ar050188x
  9. Cox, R. S.; Schenk, G.; Mitic, N.; Gahan, L. R.; Hengge, A. C. J. Am. Chem. Soc. 2007, 129, 9550. https://doi.org/10.1021/ja072647q
  10. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823. https://doi.org/10.1021/jo070171n
  11. Kirby, A. J.; Souza, B. S.; Medeiros, M.; Priebe, J. P.; Manfredi, A. M.; Nome, F. Chem. Commun. 2008, 4428.
  12. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324. https://doi.org/10.1002/chem.200800553
  13. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073. https://doi.org/10.1021/jo900219t
  14. Hall, C. R.; Inch, T. D. Tetrahedron 1980, 36, 2059. https://doi.org/10.1016/0040-4020(80)80096-2
  15. Inch, T. D.; Lewis, G. J.; Wilkinson, R. G.; Watts, P. J. Chem. Soc., Chem. Commun. 1975, 500.
  16. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894. https://doi.org/10.1021/ja00409a046
  17. Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F.; Leclercq, D. Tetrahedron Lett. 1983, 24, 4323. https://doi.org/10.1016/S0040-4039(00)88331-8
  18. Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F. J. Am. Chem. Soc. 1984, 106, 1060. https://doi.org/10.1021/ja00316a041
  19. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  20. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  21. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  22. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  23. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  24. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  25. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  26. Lumbiny, B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  27. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  28. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  29. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  30. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  31. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  32. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12. https://doi.org/10.1021/jo990671j
  33. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
  34. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  35. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  36. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851. https://doi.org/10.5012/bkcs.2008.29.4.851
  37. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
  38. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  39. Dey, N. K.; Adhikary, K. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 3856. https://doi.org/10.5012/bkcs.2010.31.12.3856
  40. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709. https://doi.org/10.5012/bkcs.2011.32.2.709
  41. Hoque, M. E. U.; Dey, S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1138. https://doi.org/10.5012/bkcs.2011.32.4.1138
  42. Guha, A. K.; Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1375. https://doi.org/10.5012/bkcs.2011.32.4.1375
  43. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474. https://doi.org/10.1002/poc.1788
  44. Adhikary, K. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 1947.
  45. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  46. Han, I. S.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 889. https://doi.org/10.5012/bkcs.2011.32.3.889
  47. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  48. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  49. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015
  50. Melander, L., Jr.; Saunders, W. H. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980.
  51. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  52. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  53. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
  54. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529. https://doi.org/10.1135/cccc19991529
  55. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  56. Streitwieser, A., Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
  57. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
  58. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
  59. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  60. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  61. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431. https://doi.org/10.1021/j100175a004
  62. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008. https://doi.org/10.1021/ja038343v
  63. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641. https://doi.org/10.1021/ja0511927
  64. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  65. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
  66. Koh, H. J.; Lee, H. C.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 1995, 16, 839.
  67. Chang, S.; Koh, H. J.; Lee, B. S.; Lee, I. J. Org. Chem. 1995, 60, 7760. https://doi.org/10.1021/jo00129a016
  68. Oh, H. K.; Shin, C. H.; Lee, I. J. Chem., Soc., Perkin Trans. 2 1995, 1169.
  69. Lee, I.; Koh, H. J. New J. Chem. 1996, 20, 131.
  70. Koh, H. J.; Kim, O. S.; Lee, H. W.; Lee. I. J. Phys. Org. Chem. 1997, 10, 725. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<725::AID-POC943>3.0.CO;2-X
  71. Lee, H. W.; Lee, J. W.; Koh, H. J.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 642.
  72. Oh, H. K.; Joung, E. M.; Cho, I. H.; Park, Y. S.; Lee, I. J. Chem., Soc., Perkin Trans. 2 1998, 2027.
  73. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; p. 239.
  74. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601. https://doi.org/10.1039/b314886f
  75. Onyido, I.; Albright, K.; Buncel, E. Org. Biomol. Chem. 2005, 3, 1468. https://doi.org/10.1039/b501537e
  76. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016.

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  3. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  4. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  5. Kinetics and Mechanism of the Anilinolyses of O-Methyl, O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1096
  6. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  7. -Ethyl Phenyl Phosphonochloridothioates in Acetonitrile vol.45, pp.5, 2013, https://doi.org/10.1002/kin.20773
  8. Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1016
  9. -butyl phenyl phosphonochloridothioate in acetonitrile: Synthesis, characterization, kinetic study, and reaction mechanism vol.30, pp.10, 2017, https://doi.org/10.1002/poc.3679
  10. Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
  11. Cleaving paraoxon with hydroxylamine: Ammonium oxide isomer favors a Frontside attack mechanism pp.08943230, 2018, https://doi.org/10.1002/poc.3866
  12. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3947
  13. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  14. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4304
  15. Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4361
  16. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4387
  17. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4403
  18. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.1055
  19. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2011, https://doi.org/10.5012/bkcs.2012.33.3.843
  20. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1879
  21. Kinetics and Mechanism of the Anilinolysis of O-Ethyl Phenyl Phosphonochloridothioate in Acetonitrile vol.33, pp.8, 2011, https://doi.org/10.5012/bkcs.2012.33.8.2707
  22. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.753
  23. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds vol.495, pp.1, 2014, https://doi.org/10.1088/1742-6596/495/1/012004