Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.12.3597

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates  

Barai, Hasi Rani (Department of Chemistry, Inha University)
Lee, Hai Whang (Department of Chemistry, Inha University)
Publication Information
Abstract
The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.
Keywords
Dual substituent effect; Anilinolysis; Bis(aryl) chlorothiophosphate; Deuterium kinetic isotope effect; Cross-interaction constant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493.   DOI   ScienceOn
2 (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317.   DOI
3 (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57.
4 (c) Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529.   DOI   ScienceOn
5 Wold, S.; Sjostrom, M. Correlation Analysis in Chemistry, Chapman, N. B., Shorter, J., Eds.; Plenum: New York, 1978; Chapter 4.
6 (a) Ruff, A.; Csizmadia, I. G. Organic Reactions Equilibria, Kinetics and Mechanism; Elsevier: Amsterdam, Netherlands, 1994; Chapter
7 (b) Humeres, E.; Debacher, N. A.; Sierra, M. M. D.; Franco, J. D.; Shutz, A. J. Org. Chem. 1998, 63, 1598.   DOI   ScienceOn
8 (c) Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 4706.   DOI   ScienceOn
9 (d) Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313.   DOI   ScienceOn
10 (e) Castro, E. A.; Pavez, P.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571.   DOI   ScienceOn
11 (f) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. .J. Org. Chem. 2002, 67, 3874.   DOI   ScienceOn
12 (g) Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995.   DOI   ScienceOn
13 (h) Williams, A. Free Energy Relationships in Organic and Bioorganic Chemistry; RSC: Cambridge, UK, 2003; Chapter 7.
14 (i) Oh, H. K.; Lee, J. M.; Lee H. W.; Lee, I. Int. J. Chem. Kinet. 2004, 36, 434.   DOI   ScienceOn
15 (a) Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
16 (b) Lee, I. Chem. Soc. Rev. 1995, 24, 223.   DOI   ScienceOn
17 (c) Marlier, J. F. Acc. Chem. Res. 2001, 34, 283.   DOI   ScienceOn
18 (d) Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217.
19 (e) Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736.   DOI   ScienceOn
20 (f) Gronert, S.; Fagin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330.   DOI   ScienceOn
21 (a) Yamata, H.; Ando, T.; Nagase, S.; Hanamura, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631.   DOI
22 (b) Zhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826.   DOI
23 (c) Poirier, R. A.; Wang, Y.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526.   DOI   ScienceOn
24 Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.