• Title/Summary/Keyword: Hydrogen ion concentration

Search Result 236, Processing Time 0.025 seconds

Antioxidantive, Phospholipase $A_2$ Inhibiting, and Anticancer Effect of Polyphenol Rich Fractions from Panax ginseng C. A. Meyer (한국산 인삼의 Polyphenol 분획물의 항산화, Phospholipase $A_2$ 및 암세포증식 억제효과)

  • Choi, Hee-Jin;Han, Ho-Suk;Park, Jung-Hye;Son, Jun-Ho;Bae, Jong-Ho;Seung, Tae-Su;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2003
  • The polyphenol fractions of Korean ginseng were purified using Sephadex LH-20, MCI gel, Bondapak $C_{18}$ TLC, and HPLC from the 60% acetone soluble fraction. Fraction I showed 48.16%, 79.71% and 43.55% inhibition at 150 ppm against lipid oxidation in the presence of copper ion, superoxide and hydrogen peroxidation. Electron donating abilities of fraction II showed 35.17% inhibition at 200 ppm. Fraction III showed 48.49% and 25% inhibition at 150 ppm against lipid oxidation in the presence of ferrous ion and hydroxy radical ion. The phospholipase $A_2$ inhibitory effect of fraction III was 48.9% at the concentration of $60\;{\mu}g/ml$. The cytotoxic effects of fraction II was the highest (73.29% at 0.25 mg/ml) among the tested polyphenol fractions.

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

The influences of extraction time and pressure on the chemical characteristics of Gyejibokryeong-hwan decoctions

  • Kim, Jung-Hoon;Lee, Nari;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • Objectives : This study was aimed to compare Gyejibokryeong-hwan (GBH) decoctions produced using different pressure levels for various extraction times to find the optimal extraction conditions through extraction yield, total soluble solids content (TSSC), hydrogen ion concentration (pH), and the contents of chemical compounds. Methods : Decoctions of GBH were prepared under the pressure levels of 0 or $1kgf/cm^2$ for 30-180 min using water as extraction solvent. The extraction yield, TSSC, and pH were measured, and the amounts of the chemical compounds were determined using high performance liquid chromatography-photodiode array detector. Results : The higher pressure and longer extraction time increased the values of TSSC and extraction yield, while decreased the pH value. The decoctions produced in 180 min by pressurized method and produced in 150 min by non-pressurized method showed maximum values of extraction yield and TSSC with minimum value of pH. The amounts of chemical compounds showed variations in pressurized and non-pressurized decoction during overall extraction times. The influences of pressure and extraction time on extraction yield, TSSC, pH, and the contents of chemical compounds were confirmed by regression analysis, which showed that all extraction values were significantly affected by at least one of two extraction factors, pressure and extraction time. Conclusions : This study suggests that the pressure and extraction time can significantly affect the extraction efficiency of components from GBH decoctions. However, optimal extraction conditions could not be chosen due to the variation of the amounts of chemical compounds.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Distribution of Pathogenic Vibrios in the Aquatic Environment Adjacent to Coastal Areas of South Korea and Analysis of the Environmental Factors Affecting Their Occurrence (2016년도 국내 해양환경내 병원성 비브리오균의 분포 및 해양환경인자간의 상관성 분석)

  • Jeong, Young-Il;Myung, Go-Eun;Choi, Eun-Jin;Soh, Sang-Moon;Park, Gi-Jun;Son, Tae-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Objectives: The pathogenic Vibrios genus denotes halophilic bacteria that are distributed in aquatic environments, including both sea and freshwater. Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus are the most important species since they can be potent human pathogens and leading causes of septicemia, wound infections, and seafood borne gastroenteritis. The recent emergence of a potential pandemic clone, V. cholera serotype O1 and the cholera outbreak in South Korea in 2016 indicates the importance of consistent surveillance of pathogenic Vibrio genus within coastal areas. Methods: The present study was undertaken to determine where and how vibrios live in the aquatic environment adjacent to coastal areas of South Korea. For this survey, a total of 838 samples were obtained at 35 different sites in South Korean coastal areas during the period from January 2016 to December 2016. Pathogenic vibrios was determined using the real-time PCR method, and its clones were isolated using three selective plating media. We also monitored changes in seawater and atmospheric temperature, salinity, turbidity, and hydrogen ion concentration at the collection points. Results: The total isolation rates of V. vulnificus, V. cholera (non-pathogenic, non-O1, non-O139 serogroups), and V. parahaemolyticus from seawater specimens in 2016 were 14.2, 13.48, and 67.06%, respectively. Conclusions: The isolation rates of pathogenic vibrios genus showed a positive correlation with temperature of seawater and atmosphere but were negatively correlated with salinity and turbidity.

Changes in pH values in the oral cavity according to the intake method of powdered probiotics (분말형 프로바이오틱스 섭취방법에 따른 구강 내 pH 변화)

  • Hwang, Young-Sun;Lee, Min-Kyung;Kim, Myoung-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.1099-1107
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the changes in pH in the oral cavity using the probiotic intake method. Methods: A total of 109 participants were enrolled and randomly assigned to three groups. Participants in the control group did not ingest powdered probiotics, those in experimental group 1 ingested powdered probiotics by dissolving them on the tongue, and those in experimental group 2 dissolved powdered probiotics on the tongue and rinsed with water. pH values were measured 5 times in all. The significance of each group was examined by the Kruskal-Wallis test. The trend over time was expressed as a graph with groupwise means and confidence intervals, considering repeated measurement data. Results: A significant difference was found between the control group and experimental group 1 at two time-points, i.e., immediately after intake and 3 min after ingestion. As a result of the time trend, the pH value of experimental group 2 was smaller than that of experimental group 1, compared to the control group. Conclusions: Studies have shown that taking probiotics with water may help reduce changes in oral pH. Probiotics should be aware of live bacteria and provide consumers with more detailed information on proper dosage and precautions.

The Electrochemical Properties and Synthesis of V2O5 Xerogel using H2O2 (과산화수소를 이용한 V2O5 Xerogel의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Jung, Jae-Youb;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.107-111
    • /
    • 2005
  • We have performed a study on the electrochemical characteristics and nuclear ($^7Li$) magnetic resonance of $V_2O_5$ xerogels that have been synthesized by the sol-gel reaction of $V_2O_5$ powder with hydrogen peroxide. NMR measurements revealed that chemical shift of $Li^+$ ions varied as lithium ions were inserted into $V_2O_5$ xerogel and that several different sites for $Li^+$ ions existed in the $V_2O_5$ xerogel structure. The electrochemical properties of the xerogel electrodes did not depend much upon the concentration of $V_2O_5$ and HCl that were used for the synthesis of $V_2O_5$ gels. The specific capacity of $V_2O_5$ xerogels were about 140 mAh/g, similar to that of the xerogels prepared by the ion exchange method.

Effective Water Pollution Management using Reservoir Tank Automatic Classification (저수조 자동 분류를 이용한 효과적인 수질 오염 관리)

  • Chung, Kyung-Yong;Jun, In-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.1-8
    • /
    • 2009
  • With the development of IT convergence technology and the construction of master plan for the four rivers restoration of the government, the importance of the eco-friendly water pollution management is being spotlighted. In this paper, we proposed the effective water pollution management using the reservoir tank automatic classification for improving the water quality and on-line managing efforts of ceo-friendly reservoir tanks. The proposed method defined the seven factors of water pollution evaluation and managed the water pollution according to hydrogen ion concentration(pH), chemical oxygen demand(COD), suspend solid(SS), dissolved oxygen(DO), count of coliform group(MPN), total phosphorus(T-P), and total nitrogen(T-N) using the sensors. We measured the values for the seven factors from the reservoir tank and normalized to ranging from 1 to 9. To evaluate the performance of the water pollution management using the reservoir tank automatic classification, we conducted F-measure so as to verify usefulness. This evaluation found that the difference of satisfaction by the traditional system was statistically meaningful.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

Heavy Metal Wastewater Treatment (Batch Mode) by Domestic Zeolite (국산(國産) Zeolite를 이용(利用)한 중금속(重金屬) 폐수(廢水) 처리공정(處理工程) 연구(硏究) - Batch Test를 중심(中心)으로 -)

  • Shin, Eung Bai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 1982
  • This study was aimed ultimately to develop an adsorption process treating heavy metal industrial wastewater by utilizing domestically abundant natural zeolite and the study was conducted in a series of investigations. Presented if1 this paper are the results of the preliminary batch mode test. Factors affecting an adsorption process of heavy metals of aqueous waste stream by zeolite are numerous. Factors such as hydrogen ion concentration and temperature are taken into consideration in the investigation to evaluate adsorptive capacity. The mechanisms of adsorption may better be described by an evaluation of adsorption isotherm andi of adsorption kinetics. It is observed from the preliminary investigation that an optimum adsorption occurs at higher pH's than 4. It is further demonstrated that $Cd^{+2}$ adsorption by zeolite follows the BET model better than the Freundlich and the Langmuir model and that the reaction time of at least 10 minutes is required. It is interesting to note that higher adsorptive capacity was found at higher temperature, suggesting that the adsorption is not only due to simple physisorption but also due to chemisorption.

  • PDF