• Title/Summary/Keyword: Hydrogen exchange

Search Result 408, Processing Time 0.025 seconds

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane (PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구)

  • Oh, Sohyeong;Park, Jisang;Jung, Sunggi;Jeong, Jihong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.49-53
    • /
    • 2021
  • The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.

Effect of Annealing Temperature on the Durability of PEMFC Polymer Membrane (PEMFC 고분자막의 어닐링 온도가 내구성에 미치는 영향)

  • Lee, Mihwa;Oh, Sohyeong;Park, Yujun;Yoo, Donggeun;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.7-11
    • /
    • 2022
  • In the membrane forming process of a proton exchange membrane fuel cell (PEMFC), drying and annealing heat treatment processes are required for performance and durability. In this study, the optimal annealing temperature for improving the durability of the polymer membrane was studied. It was annealed in the temperature range of 125~175 ℃, and thermal stability and hydrogen permeability were measured as basic data of durability at each annealing temperature. The electrochemical durability was analyzed by Fenton reaction and open circuit voltage (OCV) holding. The annealing temperature of 165 ℃ was the optimal temperature in terms of thermal stability and hydrogen permeability. In the Fenton reaction, the fluorine emission rate of the membrane annealed at 165 ℃ was the lowest, and the lifespan of the membrane annealed at 165 ℃ was the longest in the OCV holding experiment, confirming that 165 ℃ was the optimal temperature for the durability of the polymer membrane.

Synergistic Effect of Sulfonated Poly(Ether Ether Ketone)/Strontium Zirconate Perovskite Nanofiber-Based Novel Electrospun Composite Membranes for Fuel Cell Applications (연료전지용 술폰화된 폴리(이써 이써 케톤)/스트론튬 지르코네이트 페로브스카이트 나노섬유 기반 신규 전기방사 복합막의 시너지 효과)

  • SELVAKUMAR, KANAKARAJ;KIM, AE RHAN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.164-175
    • /
    • 2022
  • In this work, sulfonated poly (ether ether ketone) (SPEEK) composite membranes including strontium zirconate (SrZrO3) were fabricated by the electrospinning method. Fourier-transform infrared spectroscopic analysis and X-ray diffraction analysis were used to identify the chemical structure and the crystallinity of SrZrO3 and electrospun composite membranes. The thermal stability of the pure SPEEK and SPEEK/SrZrO3 electrospun composite membranes were investigated by using thermogravimetric analysis. The physicochemical properties and proton conductivity were enhanced with the addition of different weight ratio of SrZrO3 nanofiller (2, 4 and 6 wt%) in SPEEK polymer. The optimized SPEEK/SrZrO3-4 electrospun membrane containing 4 wt% of SrZrO3 showed a high proton conductivity compared to other electrospun SPEEK/SrZrO3 composite membranes. The results indicate that electrospun composite membranes incorporating these perovskite nanofillers should be explored as potential candidates for use in proton exchange membrane fuel cells.

Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC (작동 조건에 따른 고온 고분자 전해질 연료전지의 성능 변화에 대한 전산해석 연구)

  • Kim, Kyoung-Youn;Sohn, Young-Jun;Kim, Min-Jin;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • A two-dimensional isothermal model has been employed for numerical simulations of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated with existing experimental data and used for examination on the effects of various operating conditions on the fuel cell performance. The present numerical results show that the cell performance increases with increasing exchange current density, ion conductivity of the membrane, inlet gas flow rate as well as operating pressure. Also, higher porosity of gas diffusion layer (GDL) results in higher cell performance due to enhancement of the diffusion through the GDL, where the cathode GDL porosity more influences on the performance as compared with the anode one.

Sulfenic Acid Derived from 1,3-Oxathiolane-3-oxide (1,3-Oxathiolane-3-oxide로 부터 유도되는 술펜산)

  • Wha Suk Lee;Oee Sook Park
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.197-202
    • /
    • 1987
  • Sigmatropic rearrangement of cis and trans-2-methyl-N-phenyl-1,3-oxathiolane-2-acetamide (b) and (c) gave unisolable sulfenic acids (d) and (f), respectively. These sulfenic acids were confirmed by deuterium exchange reactions involving 2-methylene and 2-methyl groups. The reactions also showed that no isomerization between the cis and trans sulfoxides (b) and (c) occurred under neutral conditions. However, the isomerization took place in the presence of acid catalyst. Stereospecific recyclization of sulfenic acids to the sulfoxides is attributable to possible hydrogen bonding between sulfenyl oxygen and NH proton or it arises from the geometrical requirements of the reacting bond and atoms in the reverse sigmatropic rearrangement. In the oxidation of 1, 3-oxathiolane, cis sulfoxide (b) could be obtained selectively in high yield by using $H_2O_2$-benzene seleninic acid.

  • PDF

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Synthesis and Electrochemical Characteristics of Li4Ti5O12 Nanofibers by Hydrothermal Method (수열법에 의한 Li4Ti5O12 Nanofibers 합성 및 전기화학적 특성에 관한 연구)

  • Kim, Eun-Kyung;Choi, Byung-Hyun;Jee, Mi-Jung;Kwon, Yong-Jin;Seo, Han;Kim, Young-Jun;Kim, Kwang-Bum
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.627-632
    • /
    • 2010
  • In this paper the effect of the structure, particle size, morphology of nanofibers and nanoparticles for the electrochemical characteristics of $Li_4Ti_5O_{12}$ was investigated. The $H_2Ti_2O_5{\cdot}H_2O$ synthesized in hydrothermal treatment from a NaOH treatment on $TiO_2$ by ion exchange processing with HCl solutions. After the $Li_4Ti_5O_{12}$ nanofibers synthesized in hydrothermal treatment of $H_2Ti_2O_5{\cdot}H_2O$ and $LiOH{\cdot}H_2O$. The hydrogen titanate precursor prepared by ion exchange processing with 0.1~0.3M HCl solutions and the final products calcined at $350^{\circ}C{\sim}400^{\circ}C$. The $Li_4Ti_5O_{12}$ nanofibers showed well reversibility during the insertion and extraction of Li, good cycle performance, high capacity and low electrochemical reaction resistance than nanoparticles. also c-rate exhibited a discharge capacity of 172 mAh/g at 0.2C and 115mAh/g at 5C, which is the 77%, 67% of that obtained in the process charged, discharged at 0.2C.

A Study on High Efficiency Power Conditioning System for Safety Operation of PEMFC_type Fuel Cell Generation System (고분자전해질형 연료전지 발전시스템의 안전운전을 위한 고성능 전력변환기에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.57-61
    • /
    • 2006
  • Fuel cells are direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper is studied on a high efficiency power conditioning system (PCS) applied to the proton exchange membrane fuel cell (PEMFC) generation system. This paper is designed to a novel PCS circuit topology of high efficiency. Some experimental results of the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

A Comprehensive Review of PEMFC Durability Test Protocol of Pt Catalyst and MEA (수소연료전지 백금촉매 및 MEA 장기내구성 평가 방법의 비교)

  • Ham, Kahyun;Chung, Sunki;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.659-666
    • /
    • 2019
  • Proton exchange membrane fuel cells (PEMFCs) generate electricity by electrochemical reactions of hydrogen and oxygen. PEMFCs are expected to alternate electric power generator using fossil fuels with various advantages of high power density, low operating temperature, and environmental-friendly products. PEMFCs have widely been used in a number of applications such as fuel cell vehicles (FCVs) and stationary fuel cell systems. However, there are remaining technical issues, particularly the long-term durability of each part of fuel cells. Degradation of a carbon supported-platinum catalyst in the anode and cathode follows various mechanistic origins in different fuel cell operating conditions, and thus accelerated stress test (AST) is suggested to evaluate the durability of electrocatalyst. In this article, comparable protocols of the AST durability test are intensively explained.

Comparison of Characteristics and Performance of Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지 고분자막의 특성 및 성능 비교)

  • Lee, Daewoong;Lim, Daehyun;Oh, Sohyeong;Chung, Hoi-Bum;Yoo, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.171-175
    • /
    • 2020
  • In the proton exchange membrane fuel cells (PEMFC), the development of a reinforced membrane with improved durability by a support is actively in progress in Korea. In this study, the initial performance and characteristics of four types of reinforced membranes were compared. Reinforced membranes with higher amounts of C-F chains in the polymer membrane showed lower water diffusion coefficients due to the hydrophobicity of the C-F chains. The thicker the polymer membrane, the more the hydrogen permeability decreased and the higher the OCV. Membrane with short resistance below 1.5 Ωcm2 showed OCV below 0.9 V and the lowest performance, so short resistance should be above 3.0 Ωcm2. Compared with the current standard membrane, there was a similar domestic membrane, which could confirm the possibility of localization of PEMFC polymer membrane.