Browse > Article
http://dx.doi.org/10.9713/kcer.2021.59.1.49

Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane  

Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University)
Park, Jisang (Department of Chemical Engineering, Sunchon National University)
Jung, Sunggi (Department of Chemical Engineering, Sunchon National University)
Jeong, Jihong (SANG-A FRONTEC CO. Ltd)
Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
Publication Information
Korean Chemical Engineering Research / v.59, no.1, 2021 , pp. 49-53 More about this Journal
Abstract
The Fenton reaction is often used to evaluate the chemical durability of polymer membranes of Proton Exchange Membrane Fuel Cells (PEMFC). However, due to the violent reaction between hydrogen peroxide and iron ions, it is difficult to compare experimental data because of low reproducibility. In this study, we tried to find the reaction conditions to improve the reproducibility of the durability test of the membrane by the Fenton reaction. The hydrogen peroxide concentration was fixed at 30%, the iron ion concentration, temperature, stirring speed, and sample size were varied, and the fluorine ion concentration of the Nafion polymer membrane deteriorated by radicals was measured. When the iron ion concentration was increased or the membrane sample size was increased, and the reaction temperature was increased to 80 ℃, the experimental deviation increased, so an iron ion concentration of 10 ppm, a temperature of 70 ℃, and a sample size of 0.5 ㎠ were suitable.
Keywords
PEMFC; Membrane; Degradation; Fenton reaction; Optimal condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107(10), 3904-51(2007).   DOI
2 Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005).   DOI
3 U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
4 Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993).   DOI
5 Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkion, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004).   DOI
6 Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).   DOI
7 Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003).   DOI
8 Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005).   DOI
9 Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. Power Sources, 131(1-2), 41-48(2004).   DOI
10 Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
11 Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).   DOI
12 Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy, 33(9), 2283-2288(2008).   DOI
13 Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222- 1228(2006).   DOI
14 Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432(1), 66-72(2013).   DOI
15 Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
16 Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perflu orosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9), 1766-1772(2013).   DOI
17 Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with CeO2 as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017).   DOI
18 Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polym. Degrad. Stab., 138, 98-105(2017).   DOI
19 Liang, Z., Chen, W., Liu, J., Wang, S., Zhou, Z., Li, W., Sun, G. and Xin, Q., "FT-IR Study of the Microstructure of Nafion Membrane," J. Membrane Science, 233(1-2), 39-44(2004).   DOI
20 Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295 (2018).   DOI
21 Oh, S. H, Kwag, A. H., Lee, D. U., Lee, M. S., Lee, D. H. and Park, K. P., "Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding," Korean Chem. Eng. Res., 57(6), 768-773(2019).   DOI