Browse > Article
http://dx.doi.org/10.5229/JKES.2010.13.4.283

Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC  

Kim, Kyoung-Youn (Department of Mechanical Engineering, Hanbat National University)
Sohn, Young-Jun (Fuel Cell Research Center, Korea Institute of Energy Research)
Kim, Min-Jin (Fuel Cell Research Center, Korea Institute of Energy Research)
Yang, Tae-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
Publication Information
Journal of the Korean Electrochemical Society / v.13, no.4, 2010 , pp. 283-289 More about this Journal
Abstract
A two-dimensional isothermal model has been employed for numerical simulations of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated with existing experimental data and used for examination on the effects of various operating conditions on the fuel cell performance. The present numerical results show that the cell performance increases with increasing exchange current density, ion conductivity of the membrane, inlet gas flow rate as well as operating pressure. Also, higher porosity of gas diffusion layer (GDL) results in higher cell performance due to enhancement of the diffusion through the GDL, where the cathode GDL porosity more influences on the performance as compared with the anode one.
Keywords
High temperature PEMFC; Computational Fluid Dynamics; Fuel cell performance; Operating condition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, and G. Manjavacas, 'Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs', J. Membrane Sci., 280, 351 (2006).   DOI
2 D. F. Cheddie and N. D. H. Munroe, 'Three dimensional modeling of high temperature PEM fuel cells', J. Power Sources, 160, 215 (2006).   DOI   ScienceOn
3 E. U. Ubong, Z. Shi, and X. Wang, 'Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell', J. Electrochem. Soc., 156, B1276 (2009).   DOI
4 E. L. Cussler, "Diffusion: Mass transfer in fluid systems", Cambridge Univ Press (2009).
5 D. A. Nield and A. Bejan, "Convection in porous media", Springer (1999).
6 M. M. Mench, "Fuel cell engines", Wiley (2008).
7 F. Y. Zhang, X. G. Yang, and C. Y. Wang, 'Liquid water removal from a polymer electrolyte fuel cell', J. Electrochem. Soc., 153, A225 (2006).   DOI
8 X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, and J. Shen, 'A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation', J. Power Sources, 165, 739 (2007).   DOI
9 J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu, and S. Holdcroft, 'High temperature PEM fuel cells', J. Power Sources, 160, 872 (2006).   DOI
10 O. Savadogo, 'Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications', J. Power Sources, 127, 135 (2004).   DOI   ScienceOn
11 X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, and J. Zhang, 'Hydrogen crossover in high-temperature PEM fuel cells', J. Power Sources, 167, 25 (2007).   DOI