Browse > Article
http://dx.doi.org/10.14478/ace.2019.1089

A Comprehensive Review of PEMFC Durability Test Protocol of Pt Catalyst and MEA  

Ham, Kahyun (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Chung, Sunki (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Lee, Jaeyoung (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 659-666 More about this Journal
Abstract
Proton exchange membrane fuel cells (PEMFCs) generate electricity by electrochemical reactions of hydrogen and oxygen. PEMFCs are expected to alternate electric power generator using fossil fuels with various advantages of high power density, low operating temperature, and environmental-friendly products. PEMFCs have widely been used in a number of applications such as fuel cell vehicles (FCVs) and stationary fuel cell systems. However, there are remaining technical issues, particularly the long-term durability of each part of fuel cells. Degradation of a carbon supported-platinum catalyst in the anode and cathode follows various mechanistic origins in different fuel cell operating conditions, and thus accelerated stress test (AST) is suggested to evaluate the durability of electrocatalyst. In this article, comparable protocols of the AST durability test are intensively explained.
Keywords
Proton exchange membrane fuel cells; Electrocatalyst; Durability; Accelerated stress test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. D. James, J. M. Huya-Kouadio, and C. Houchins, Mass Production Cost Estimation of Direct $H_2$ PEM Fuel Cell Systems for Transportation Applications: 2015 Update, 210-216, Strategic Analysis Inc., VA, USA (2015).
2 M. Shao, Q. Chang, J.-P. Dodelet, and R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev., 116, 3594-3657 (2016).   DOI
3 A. Kongkanand, N. P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, and D.A. Muller, Achieving high-power pem fuel cell performance with an ultralow-pt-content core-shell catalyst, ACS Catal., 6, 1578-1583 (2016).   DOI
4 A. Kongkanand and M. F. Mathias, The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells, J. Phys. Chem. Lett., 7, 1127-1137 (2016).   DOI
5 L. Dai, Y. Xue, L. Qu, H.-J. Choi, and J.-B. Baek, Metal-free catalysts for oxygen reduction reaction, Chem. Rev., 115, 4823-4892 (2015).   DOI
6 Y. Ha, S. Kang, K. Ham, J. Lee, and H. Kim, Experimental and density functional theory corroborated optimization of durable metal embedded carbon nanofiber for oxygen electrocatalysis, J. Phys. Chem. Lett., 10, 3109-3114 (2019).   DOI
7 B. Jeong, D. Shin, M. Choun, S. Maurya, J. Baik, B. S. Mun, S.-H. Moon, D. Su, and J. Lee, Nitrogen-deficient orr active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers, J. Phys. Chem. C, 120, 7705-7714 (2016).   DOI
8 D. Shin, X. An, M. Choun, and J. Lee, Effect of transition metal induced pore structure on oxygen reduction reaction of electrospun fibrous carbon, Catal. Today, 260, 82-88 (2016).   DOI
9 J. H. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev., 11, 1720-1738 (2007).   DOI
10 D. Banham and S. Ye, Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective, ACS Energy Lett., 2, 629-638 (2017).   DOI
11 U.S. DRIVE, Fuel Cell Technical Team Roadmap, 45-59, Department of Energy, USA (2017).
12 D. Shin, B. Jeong, M. Choun, J. D. Ocon, and J. Lee, Diagnosis of the measurement inconsistencies of carbon-based electrocatalysts for the oxygen reduction reaction in alkaline media, RSC Adv., 5, 1571-1580 (2015).   DOI
13 D. Shin, B. Jeong, B. S. Mun, H. Jeon, H.-J. Shin, J. Baik, and J. Lee, On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen-carbon species, J. Phys. Chem. C, 117, 11619-11624 (2013).   DOI
14 K. Ham, S. Chung, M. Choi, S. Yang, and J. Lee, Growing behaviors in colloidal solution of Pt crystal for PEMFC cathode, Appl. Chem. Eng., 30, 493-498 (2019).   DOI
15 J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth, and K. J. J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein J. Nanotechnol., 5, 44-67 (2014).   DOI
16 I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, and I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy Environ. Sci., 5, 6744-6762 (2012).   DOI
17 A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, and A. Daimaru, Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG, ECS Trans., 41, 775-784 (2011).
18 H. Schulenburg, B. Schwanitz, N. Linse, G. G. Scherer, A. Wokaun, J. Krbanjevic, R. Grothausmann, and I. Manke, 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells, J. Phys. Chem. C, 115, 14236-14243 (2011).   DOI
19 R. Sharma and S. M. Andersen, Quantification on degradation mechanisms of polymer electrolyte membrane fuel cell catalyst layers during an accelerated stress test, ACS Catal., 8, 3424-3434 (2018).   DOI
20 C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, A reverse-current decay mechanism for fuel cells, Electrochem. Solid-State Lett., 8, A273 (2005).   DOI
21 G. Tsotridis, A. Pilenga, G. De Marco, and T. Malkow, EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications, 21-33, Joint Research Centre, Luxembourg (2015).
22 X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, and J. Shen, A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, J. Power Sources, 165, 739-756 (2007).   DOI
23 R. Chattot and S. Escribano, Ageing studies of a PEM fuel cell stack developed for reformate fuel operation in ${\mu}CHP$ units: Development of an accelerated degradation procedure, Int. J. Hydrogen Energy, 40, 5367-5374 (2015).   DOI
24 I. Profatilova, P.-A. Jacques, and S. Escribano, Evaluation of parameters accelerating the aging of PEMFCs operating under reformate containing carbon monoxide, J. Electrochem. Soc., 165, F3251-F3260 (2018).   DOI
25 J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., 45-59, J. Wiley, West Sussex, England, UK (2003).
26 K. Hartl, M. Hanzlik, and M. Arenz, IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports, Energy Environ. Sci., 4, 234-238 (2011).   DOI
27 N. Dyantyi, A. Parsons, P. Bujlo, and S. Pasupathi, Behavioural study of PEMFC during start-up/shutdown cycling for aeronautic applications, Mater. Renew. Sustain. Energy, 8, 4 (2019).   DOI