DOI QR코드

DOI QR Code

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application

전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가

  • 차우주 (단국대학교 융합기술대학 에너지공학과) ;
  • 이창현 (단국대학교 융합기술대학 에너지공학과)
  • Received : 2016.12.21
  • Accepted : 2016.12.29
  • Published : 2016.12.31

Abstract

Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

염수전기분해(saline water electrolysis) 또는 클로로-알칼리 막공정(chlor-alkali membrane process)은 양이온교환막과 전극으로 구성되는 전해셀에 전기를 가하여, 고순도(> 99%)의 고부가가치 화합물(예 : 염소, 수소, 수산화나트륨)을 직접 제조하는 화학공정이다. 염수전기분해의 경제성은 동일한 양의 화합물을 생산하기 위해 투여되는 에너지 소비량을 저감시킴으로 달성될 수 있다. 이러한 이슈는 전해질이나 전극의 고유 저항을 줄이거나, 전해질과 전극 사이의 계면 저항을 감소시킴으로 달성시킬 수 있다. 본 연구에서는 전자빔 동시조사법을 사용하여, 높은 화학적 안정성을 지닌 탄화수소계 술폰산 이오노머 막의 표면에 높은 이온선택성을 갖는 고분자를 접목 시키는 시도가 이루어졌다. 이를 통해, 고분자 전해질 막의 이온전도성을 보완함과 동시에, 전극과의 계면 저항을 감소시켜, 전기화학적 효율 향상이 이루어짐을 관찰하였다.

Keywords

References

  1. K. Greenwood and M. Pearce, "The removal of carbon dioxide from atmospheric air by scrubbing with caustic soda in packed towers", Trans. Inst. Chem. Engrs., 31, 201 (1953).
  2. J. G. Shim, I. K. Park, and C. H. Lee, "Perfluorinated sulfonic acid ionomer membrane for valued chemical production", Membr. J., 26, 152 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.152
  3. K. Porter, M. King, and K. Varshney, "Interfacial areas and liquid-film mass transfer coefficients for a 3 ft diameter bubble-cap plate derived from absorption rates of $CO_2$ in to water and caustic-soda solution", Trans. Inst. Chem. Engrs., 44, 274 (1966).
  4. S. Hazen, F. Hsu, D. Mueller, J. Crowley, and J. Heinecke, "Human neutrophils employ chlorine gas as an oxidant during phagocytosis", J. clin. Invest., 98, 1283 (1996). https://doi.org/10.1172/JCI118914
  5. A. L. Antozzi, C. Bargioni, L. Iacopetti, M. Musiani, and L. Vazquez-Gomez, "EIS study of the service life of activated cathodes for the hydrogen evolution reaction in the chlor-alkali membrane cell process", Electrochim. Acta., 53, 7410 (2008). https://doi.org/10.1016/j.electacta.2007.12.025
  6. S. Lakshmanan and T. Murugesan, "The chlor-alkali process: Work in progress", Clean Techn Environ Policy, 16, 225 (2014). https://doi.org/10.1007/s10098-013-0630-6
  7. Y. Kiros, M. Pirjamali, and M. Bursell, "Oxygen reduction electrodes for electrolysis in chlor-alkali cells", Electrochim. Acta, 51, 3346 (2006). https://doi.org/10.1016/j.electacta.2005.10.024
  8. A. Jalali, F. Mohammadi, and S. Ashrafizadeh, "Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell", Desalination, 237, 133 (2009).
  9. F. Hine, "Electrode processes and electrochemical engineering", 99, Springer Science & Business Media (2012).
  10. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyether sulfone membrane for PEMFC", Membr. J., 20, 41 (2010).
  11. I. K. Park and C. H. Lee, "Chlor-alkali membrane process and its prospects", Membr. J., 25, 206 (2015).
  12. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci, 197, 233 (2002).
  13. M. M. Nasef, H. Saidi, H. M. Nor, and M. A. Yarmo, "XPS studies of radiation grafted PTFE g polystyrene sulfonic acid membranes", J. Appl. Polym. Sci, 76, 337 (2000).
  14. http://xpssimplified.com/elements/carbon.php#polymers (2013).
  15. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7620 (2005).
  16. http://www.sigmaaldrich.com/catalog/product/aldrich/561223?lang=koregion=KR (2016).