• Title/Summary/Keyword: Hydrogen exchange

Search Result 409, Processing Time 0.026 seconds

Research Trend of Direct Ammonia Anion - Exchange Membrane Fuel Cells (직접 암모니아 음이온 교환막 연료전지 연구 동향)

  • Seonyeob Kim;Ji Eon Chae;Jiseon Choi;Sunyeop Lee;Cheolwoong Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.41-51
    • /
    • 2023
  • As abnormal climatic event occur frequently due to global warming, many nations have proclaimed their commitment to achieving carbon neutrality and are actively pursuing a transition toward a hydrogen economy. At this time, ammonia has garnered significant attention not only as a high-capacity hydrogen carrier but also as a promising candidate as a carbon-free fuel. In particular, anion exchange membrane fuel cells offer the advantage of directly supplying ammonia to the fuel cell, eliminating the necessity for separate ammonia decomposition or hydrogen purification. Therefore, in this study, the operation principle and research trend of the anion exchange membrane fuel cell are reviewed, and several research using ammonia as a fuel in anion exchange membrane fuel cell are also investigated.

Preparation and Characterization of Fe-Ni-Pt Nanocatalyst for Anion Exchange Membrane in Alkaline Electrolysis (음이온 교환막 수전해용 Fe-Ni-Pt 나노촉매 제조 및 특성)

  • JAEYOUNG LEE;HONGKI LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.421-430
    • /
    • 2023
  • Fe-Ni-Pt nanocatalysts were loaded on carbon black powders which were synthesized by a spontaneous reduction reaction of iron (II) acetylacetonate, nickel (II) acetylacetonate and platinum (II) acetylacetonate. The morphology and the loading weight of Fe-Ni-Pt nanoparticles were characterized by transmission electron microscopy and thermogravimetric analyzer. The amount of Fe-Ni-Pt catalyst supported on the carbon black surface was about 6.42-9.28 wt%, and the higher the Fe content and the lower the Pt content, the higher the total amount of the metal catalyst supported. The Brunauer-Emmett-Teller Analysis (BET) specific surface area of carbon black itself without metal nanoparticles supported was 233.9 m2/g, and when metal nanoparticles were introduced, the specific surface area value was greatly reduced. This is because the metal nanocatalyst particles block the pore entrance of the carbon black, and thereby the catalytic activity of the metal catalysts generated inside the pores is reduced. From the I-V curves, as the content of the Pt nanocatalyst increased, the electrolytic properties of water increased, and the activity of the metal nanocatalyst was in the order of Pt > Ni > Fe.

CHARGE EXCHANGE EFFECTS IN COLLISIONAL IONIZATION EQUILIBRIUM OF C, N, AND O IONS (탄소, 질소 및 산소의 충돌이온화평형에서의 전하교환 효과)

  • Seon, Kwang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • The charge exchange (or transfer) due to collision with hydrogen has important effects on the physical characteristics of astrophysical plasma. In this paper, collisional ionization equilibrium in the temperature range of ${\sim}1,000--80,000K$ are investigated for C, N, and O ions including the effects of charge exchange. The calculated ionic abundance fractions are compared with those of previous works. The ionic abundance fractions calculated in the paper can be used in understanding the spectroscopic properties of warm interstellar medium. It is also found that the ratio between the degree of ionization of oxygen and that of hydrogen shows big difference with the previously well-known result for the environment where the collisional ionization is not important. This implies that investigations on the collisional ionization in the warm interstellar medium are required.

A Gas-Phase Investigation of Oxygen-Hydrogen Exchange Reaction of O(3P) + C2H5 → H(2S) + C2H4O

  • Jang, Su-Chan;Park, Min-Jin;Choi, Jong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.839-844
    • /
    • 2014
  • The gas-phase radical-radical reaction $O(^3P)$ + $C_2H_5$ (ethyl) ${\rightarrow}$ $H(^2S)$ + $CH_3CHO$(acetaldehyde) was investigated by applying a combination of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration and ab initio calculations. The two radical reactants $O(^3P)$ and $C_2H_5$ were respectively produced by photolysis of $NO_2$ and supersonic flash pyrolysis of the synthesized precursor azoethane. Doppler profile analysis of the nascent H-atom products in the Lyman-${\alpha}$ region revealed that the average translational energy of the products and the average fraction of the total available energy released as translational energy were $5.01{\pm}0.72kcalmol^{-1}$ and 6.1%, respectively. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title exchange reaction is a major channel and proceeds via an addition-elimination mechanism through the formation of a short-lived, dynamical addition complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed small kinetic energy release can be explained in terms of the loose transition state with a product-like geometry and a small reverse activation barrier along the reaction coordinate.

A Review on Development of PPO-based Anion Exchange Membranes (PPO 기반 음이온 교환막 소재 개발 동향)

  • An, Seong Jin;Kim, Ki Jung;Yu, Somi;Ryu, Gun Young;Chi, Won Seok
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

Study on the Preparation of Polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis (알칼리 수전해용 격막으로서 폴리염화비닐(polyvinyl chloride) 음이온교환막의 제조에 관한 연구)

  • Park, Jong-Ho;Bong, Soo-Yeon;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.469-474
    • /
    • 2013
  • An anion exchange membrane was prepared for a separator in the alkaline water electrolysis. An anion exchange membrane was prepared by the chloromethylation and amination of polyvinyl chloride (PVC) used as a base polymer. The membrane properties of the prepared anion exchange membrane such as the membrane resistance and ion exchange capacity were measured. The minimum membrane resistance of the prepared anion exchange membrane was $2.9{\Omega}{\cdot}cm^2$ in 1M NaOH aq. solution. This membrane had 2.17 meq./g-dry-membrane and 43.4% for the ion exchange capacity and water content, respectively. The membrane properties of the prepared anion exchange membrane was compared with that of the commercial anion exchange membrane. The membrane resistance decreased in the order; AHT>IOMAC> Homemade membrane> AHA>APS=AFN. The ion exchange capacity decreased in the order; Homemade membrane>AFN>APS>AHT>AHA>IOMAC.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

HI concentration by EED for the HI decomposition in IS process (IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

A Study on the Hydriding Reaction Characteristics and the Change of the Hydriding Reaction Rates of MmNi4.5Al0.5 during Temperature-Induced Cycling (MmNi4.5Al0.5의 수소화 반응특성 및 Temperature-Induced Cycling에 따른 수소화 반응속도의 변화에 관한 연구)

  • Kim, Soo-Ryoung;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • The hydriding kinetic mechanism and the change of the hydriding reaction rate of $MmNi_{4.5}Al_{0.5}$ during the thermally induced hydrogen absorption-desorption cycling are investigated. Comparison of the reaction rate data which are obtained by the pressure sweep method with the theoretical rate equations suggests that the hydriding rate controlling step has changed from the dissociative chemisorption of hydrogen molecules at the surface to the hydrogen diffusion through the hydride phase with the increase of the hydriding fraction. These hydriding kinetic mechanism is not changed during the cycling. However, the intrinsic hydriding reaction rate of $MmNi_{4.5}Al_{0.5}$ after 5500 cycles increases significantly comparing with the activated one. It is suggested that the change of the hydriding kinetic behavior due to intrinsic degradation of $MmNi_{4.5}Al_{0.5}$ can be interpreted as follows ; the formation of nickel cluster at the surface of the sample and the host metal atom exchange in bulk by thermal cycling.

  • PDF

Experimental Study on the Preferential Oxidation Reactor Performance Using a Water Cooling Heat Removal for Polymer Electrolyte Membrane Fuel Cell (수냉식 방열을 이용한 연료전지용 PROX 반응기의 성능에 관한 실험적 연구)

  • KIM, JINSAN;JO, TAEHYUN;KOO, BONCHAN;LEE, DOHYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.503-509
    • /
    • 2016
  • Fuel cell is a device for producing electricity by using the hydrogen produced by the fuel processor. At this time, CO is also created by the fuel processor. The resulting CO enters the stack where is produce electricity and leads to the adsorption of anode catalyst, finally the CO poisoning occurs. Stack which occurred CO poisoning has a reduction in performance and shelf life are gradually fall because they do not respond to hydrogen. In this paper, experiments that using a PROX reactor to prevent CO poisoning were carried out for removing the CO concentration to less than 10ppm range available in the fuel cell. Furthermore experiments by the PROX reaction was designed and manufactured with a water-cooling heat exchange reactor to maintain a suitable temperature control due to the strong exothermic reaction.