Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.371

A Review on Development of PPO-based Anion Exchange Membranes  

An, Seong Jin (School of Polymer Science and Engineering, Chonnam National University)
Kim, Ki Jung (School of Polymer Science and Engineering, Chonnam National University)
Yu, Somi (School of Polymer Science and Engineering, Chonnam National University)
Ryu, Gun Young (Department of Polymer Engineering, Graduate School, Chonnam National University)
Chi, Won Seok (School of Polymer Science and Engineering, Chonnam National University)
Publication Information
Membrane Journal / v.31, no.6, 2021 , pp. 371-383 More about this Journal
Abstract
Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.
Keywords
anion exchange membranes; PPO; quaternization; ion conductivity; alkaline stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, "Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions", Sustain. Energy Fuels, 4, 2114 (2020).   DOI
2 K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., 36, 307 (2010).   DOI
3 S. Noh, J. Y. Jeon, S. Adhikari, Y. S. Kim, and C. Bae, "Molecular Engineering of Hydroxide Conducting Polymers for Anion Exchange Membranes in Electrochemical Energy Conversion Technology", Acc. Chem. Res., 52, 2745 (2019).   DOI
4 J. Ran, L. Wu, Q. Ge, Y. Chen, and T. Xu, "High performance anion exchange membranes obtained through graft architecture and rational cross-linking", J. Membr. Sci., 470, 229 (2014).   DOI
5 J. Song, B. Seo, and Y. Choi, "Structural Studies in Anion Exchange Membrane Prepared by Vinyl Benzyl Chloride and its Electrochemical Properties", Membr. J., 25, 310 (2015).   DOI
6 G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", J. Membr. Sci., 377. 1 (2011).   DOI
7 K. S. Im, T. Y. Son, K. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", Appl. Chem. Eng., 30, 389 (2019).   DOI
8 M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?", Chem. Rev., 104, 4245 (2004).   DOI
9 J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, "Properties of Nafion® NR-211 membranes for PEMFCs", J. Membr. Sci., 356, 44 (2010).   DOI
10 J.-H. Kim, S. Ryu, and S.-H. Moon, "The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems", Membr. J., 30, 79 (2020).   DOI
11 N. Li, M. D. Guiver, and W. H. Binder, "Towards high conductivity in anion-exchange membranes for alkaline fuel cells", ChemSusChem, 6, 1376 (2013).   DOI
12 X. Cheng, J. Wang, Y. Liao, C. Li, and Z. Wei, "Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal", ACS Appl. Mater. Interfaces, 10, 23774 (2018).   DOI
13 H. Long, K. Kim, and B. S. Pivovar, "Hydroxide degradation pathways for substituted trimethylammonium cations: A DFT study", J. Phys. Chem. C, 116, 9419 (2012).   DOI
14 S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson, and B. S. Pivovar, "Density functional theory study of degradation of tetraalkylammonium hydroxides", J. Phys. Chem. C, 114, 11977 (2010).   DOI
15 T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, "Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC)", Appl. Chem. Eng., 29, 489 (2018).   DOI
16 Z. Zhang, E. Chalkova, M. Fedkin, C. Wang, S. N. Lvov, S. Komarneni, and T. C. M. Chung, "Synthesis and characterization of poly(vinylidene fluoride)-g-sulfonated polystyrene graft copolymers for proton exchange membrane", Macromolecules, 41, 9130 (2008).   DOI
17 P. E. Brockway, A. Owen, L. I. Brand-Correa, and L. Hardt, "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources", Nat. Energy, 4, 612 (2019).   DOI
18 A. Hasanbeigi, L. Price, and E. Lin, "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review", Renew. Sustain. Energy Rev., 16, 6220 (2012).   DOI
19 N. Ramaswamy and S. Mukerjee, "Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer", Chem. Rev., 119. 11945 (2019).   DOI
20 X. Chu, Y. Shi, L. Liu, Y. Huang, and N. Li, "Piperidinium-functionalized anion exchange membranes and their application in alkaline fuel cells and water electrolysis", J. Mater. Chem. A, 7, 7717 (2019).   DOI
21 G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells", Prog. Polym. Sci., 36, 1521 (2011).   DOI
22 P. Atkins and P. J. De, "Physical Chemistry", 7th Edition, Oxford Univ. Press (2002).
23 J. S. Olsson, T. H. Pham, and P. Jannasch, "Functionalizing Polystyrene with N-Alicyclic PiperidineBased Cations via Friedel-Crafts Alkylation for Highly Alkali-Stable Anion-Exchange Membranes", Macromolecules, 53, 4722 (2020).   DOI
24 H. S. Dang and P. Jannasch, "A comparative study of anion-exchange membranes tethered with different hetero-cycloaliphatic quaternary ammonium hydroxides", J. Mater. Chem. A, 5, 21965 (2017).   DOI
25 J. Xue, X. Liu, J. Zhang, Y. Yin, and M. D. Guiver, "Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes", J. Membr. Sci., 595, 117507 (2020).   DOI
26 H. S. Dang and P. Jannasch, "High-Performing Hydroxide Exchange Membranes with Flexible Tetra-Piperidinium Side Chains Linked by Alkyl Spacers", ACS Appl. Energy Mater., 1, 2222 (2018).   DOI
27 R. A. Becerra-Arciniegas, R. Narducci, G. Ercolani, S. Antonaroli, E. Sgreccia, L. Pasquini, P. Knauth, and M. L. Di Vona, "Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route", Polymer, 185, 121931 (2019).   DOI
28 J. Ran, L. Wu, Y. Ru, M. Hu, L. Din, and T. Xu, "Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives", Polym. Chem., 6, 5809 (2015).   DOI
29 J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, "Anion-exchange membranes in electrochemical energy systems", Energy Environ. Sci., 7, 3135 (2014).   DOI
30 N. Li, T. Yan, Z. Li, T. Thurn-Albrecht, and W. H. Binder, "Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes", Energy Environ. Sci., 5, 7888 (2012).   DOI
31 S. He, L. Liu, X. Wang, S. Zhang, M. D. Guiver, and N. Li, "Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes", J. Membr. Sci., 509, 48 (2016).   DOI
32 X. Chu, L. Liu, Y. Huang, M. D. Guiver, and N. Li, "Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: Synthesis and durability", J. Membr. Sci., 578, 239 (2019).   DOI
33 J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, "Hydrogen energy, economy and storage: Review and recommendation", Int. J. Hydrogen Energy, 44, 15072 (2019).   DOI
34 H. J. Mun, J. H. Choi, Y. T. Hong, and B. J. Chang, "The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate", Membr. J., 25, 515 (2015).   DOI
35 M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities", Macromolecules, 50, 7809 (2017).   DOI
36 N. L. Panwar, S. C. Kaushik, and S. Kothari, "Role of renewable energy sources in environmental protection: A review", Renew. Sustain. Energy Rev., 15, 1513 (2011).   DOI
37 U. Eberle, M. Felderhoff, and F. Schuth, "Chemical and physical solutions for hydrogen storage", Angew. Chem. Int. Ed., 48, 6608 (2009).   DOI
38 W. I. F. David, J. W. Makepeace, S. K. Callear, H. M. A. Hunter, J. D. Taylor, T. J. Wood, and M. O. Jones, "Hydrogen production from ammonia using sodium amide", J. Am. Chem. Soc., 136, 13082 (2014).   DOI
39 I. Dincer and C. Acar, "Review and evaluation of hydrogen production methods for better sustainability", Int. J. Hydrogen Energy, 40, 11094 (2015).   DOI
40 H. F. Abbas and W. M. A. Wan Daud, "Hydrogen production by methane decomposition: A review", Int. J. Hydrogen Energy, 35, 1160 (2010).   DOI
41 M. G. Marino, and K. D. Kreuer, "Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids", ChemsusChem, 8, 513 (2015).   DOI
42 J. Ran, L. Wu, B. Wei, Y. Chen, and T. Xu, "Simultaneous Enhancements of Conductivity and Stability for Anion Exchange Membranes (AEMs) through Precise Structure Design", Sci. Rep., 4 (2014).   DOI
43 M. I. Khan, X. Li, J. Fernandez-Garcia, M. H. Lashari, A. Ur Rehman, N. Elboughdiri, L. Kolsi, and D. Ghernaout, "Effect of Different Quaternary Ammonium Groups on the Hydroxide Conductivity and Stability of Anion Exchange Membranes", ACS Omega, 6, 7994 (2021).   DOI
44 Y. Yang, Y. Xu, N. Ye, D. Zhang, J. Yang, and R. He, "Alkali Resistant Anion Exchange Membranes Based on Saturated Heterocyclic Quaternary Ammonium Cations Functionalized Poly(2,6-dimethyl-1,4-phenylene oxide)s", J. Electrochem. Soc., 165, F350 (2018).   DOI
45 J. Pan, J. Han, L. Zhu, and M. A. Hickner, "Cationic Side-Chain Attachment to Poly(Phenylene Oxide) Backbones for Chemically Stable and Conductive Anion Exchange Membranes", Chem. Mater., 29, 5321 (2017).   DOI
46 N. Chen, C. Long, Y. Li, C. Lu, and H. Zhu, "Ultrastable and High Ion-Conducting Polyelectrolyte Based on Six-Membered N-Spirocyclic Ammonium for Hydroxide Exchange Membrane Fuel Cell Applications", ACS Appl. Mater. Interfaces, 10, 15720 (2018).   DOI
47 M. Mandal, "Recent Advancement on Anion Exchange Membranes for Fuel Cell and Water Electrolysis", ChemElectroChem, 8. 36 (2021).   DOI
48 J. Ran, L. Wu, and T. Xu, "Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers", Polym. Chem., 4, 4612 (2013).   DOI
49 X. L. Gao, L. X. Sun, H. Y. Wu, Z. Y. Zhu, N. Xiao, J. H. Chen, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Highly conductive fluorine-based anion exchange membranes with robust alkaline durability", J. Mater. Chem. A, 8, 13065 (2020).   DOI
50 G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, and C. Hao, "Hydroxide ion transfer in anion exchange membrane: A density functional theory study", Int. J. Hydrogen Energy, 41, 6877 (2016).   DOI
51 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light", Nat. Mater., 8, 76 (2009).   DOI