DOI QR코드

DOI QR Code

Research Trend of Direct Ammonia Anion - Exchange Membrane Fuel Cells

직접 암모니아 음이온 교환막 연료전지 연구 동향

  • Seonyeob Kim (Dept. of Mobility Power Research, Eco-Friendly Energy Conversion Research Division Korea Institute of Machinery & Matrials) ;
  • Ji Eon Chae (Dept. of Mobility Power Research, Eco-Friendly Energy Conversion Research Division Korea Institute of Machinery & Matrials) ;
  • Jiseon Choi (Dept. of Mobility Power Research, Eco-Friendly Energy Conversion Research Division Korea Institute of Machinery & Matrials) ;
  • Sunyeop Lee (Dept. of Mobility Power Research, Eco-Friendly Energy Conversion Research Division Korea Institute of Machinery & Matrials) ;
  • Cheolwoong Park (Dept. of Mobility Power Research, Eco-Friendly Energy Conversion Research Division Korea Institute of Machinery & Matrials)
  • 김선엽 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 채지언 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 최지선 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 이선엽 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 박철웅 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실)
  • Received : 2023.08.16
  • Accepted : 2023.09.24
  • Published : 2023.09.30

Abstract

As abnormal climatic event occur frequently due to global warming, many nations have proclaimed their commitment to achieving carbon neutrality and are actively pursuing a transition toward a hydrogen economy. At this time, ammonia has garnered significant attention not only as a high-capacity hydrogen carrier but also as a promising candidate as a carbon-free fuel. In particular, anion exchange membrane fuel cells offer the advantage of directly supplying ammonia to the fuel cell, eliminating the necessity for separate ammonia decomposition or hydrogen purification. Therefore, in this study, the operation principle and research trend of the anion exchange membrane fuel cell are reviewed, and several research using ammonia as a fuel in anion exchange membrane fuel cell are also investigated.

지구 온난화로 인한 이상기후 현상이 빈번하게 발생함에 따라 많은 국가들이 탄소 중립을 선언하였고, 수소경제 사회로의 진입을 위해 노력하고 있다. 이때 암모니아는 수소 저장 밀도가 높아 수소 캐리어로써의 역할로 주목받고 있을 뿐만 아니라 무탄소 연료로써 활용의 역할도 주목받고 있다. 특히 암모니아 연료전지에 있어서, 음이온 교환막 연료전지에서는 별도의 암모니아 분해 장비나 수소 고순도화 장비가 필요 없이 암모니아를 바로 연료전지로 공급해 줄 수 있다는 장점이 있다. 따라서 본 연구에서는 이러한 음이온 교환막 연료전지의 작동 원리 및 연구 동향을 살펴보고 이를 바탕으로 음이온 교환막 연료전지에서 암모니아를 직접 연료로 활용한 연구 사례들을 알아보고자 한다.

Keywords

Acknowledgement

본 연구는 한국기계연구원 기본사업 "차세대 암모니아 연료전지 스택 및 시스템 개발" 및 한국재료연구원 KIMS-KIMM 협력마중물 사업 "비귀금속 전극 촉매 기반 음이온 교환막 연료전지 기술 개발"의 지원으로 수행되었습니다.

References

  1. Intergovernmental Panel on Climate Change, "Summary for Policymakers. Special Report: Global Warming of 1.5℃", (2018)
  2. Dong, F., Li, Y., Gao, Y., Zhu, J., Qin, C., and Zhang, X., "Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries", Resources, Conservation and Recycling, 177, 106002, (2022)
  3. Chapman, A. J., Fraser, T., and Itaoka, K., "Hydrogen import pathway comparison framework incorporating cost and social preference: Case studies from Australia to Japan", International Journal of Energy Research, 41(14), 2374-2391, (2017) https://doi.org/10.1002/er.3807
  4. Chu, K. H., Lim, J., Mang, J. S., and Hwang, M. H., "Evaluation of strategic directions for supply and demand of green hydrogen in South Korea", International Journal of Hydrogen Energy, 47(3), 1409-1424, (2022) https://doi.org/10.1016/j.ijhydene.2021.10.107
  5. Soloveichik, G., "Ammonia for energy storage and delivery", The 13th annual NH3 Fuel Conference, NH3 Fuel Association, (2016)
  6. Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I., and Bowen, P. J., "Ammonia for power", Progress in Energy and combustion science, 69, 63-102, (2018) https://doi.org/10.1016/j.pecs.2018.07.001
  7. Lee, S., Jang, H., Park, C., Oh, S., Lee, S., and Kim, Y., "A Study on Ammonia Partial Oxidation over Ru Catalyst", Journal of Hydrogen and New Energy, 33(6), 786-794, (2022) https://doi.org/10.7316/KHNES.2022.33.6.786
  8. Yousefi Rizi, H. A., and Shin, D., "Green hydrogen production technologies from ammonia cracking", Energies, 15(21), 8246, (2022)
  9. Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., "Review of the decomposition of ammonia to generate hydrogen", Industrial & Engineering Chemistry Research, 60(51), 18560-18611, (2021) https://doi.org/10.1021/acs.iecr.1c00843
  10. Rathore, S. S., Biswas, S., Fini, D., Kulkarni, A. P., and Giddey, S., "Direct ammonia solid-oxide fuel cells: A review of progress and prospects", International Journal of Hydrogen Energy, 46(71), 35365-35384, (2021) https://doi.org/10.1016/j.ijhydene.2021.08.092
  11. Berwal, P., Kumar, S., and Khandelwal, B., "A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion", Journal of the Energy Institute, 99, 273-298, (2021) https://doi.org/10.1016/j.joei.2021.10.001
  12. Hansson, J., Brynolf, S., Fridell, E., and Lehtveer, M., "The potential role of ammonia as marine fuel -based on energy systems modeling and multicriteria decision analysis", Sustainability, 12(8), 3265, (2020)
  13. Han, D., Liu, Y., and Huang, Z., "The Use of Ammonia as a Fuel for Combustion Engines", Engines and Fuels for Future Transport, 233-256, (2022)
  14. Wang, B., Ni, M., and Jiao, K., "Green ammonia as a fuel", Science bulletin, 67(15), 1530-1534, (2022) https://doi.org/10.1016/j.scib.2022.06.023
  15. Kishimoto, M., Muroyama, H., Suzuki, S., Saito, M., Koide, T., Takahashi, Y., ... and Eguchi, K., "Development of 1 kW-class Ammonia-fueled Solid Oxide Fuel Cell Stack", Fuel Cells, 20(1), 80-88, (2020) https://doi.org/10.1002/fuce.201900131
  16. Yang, J., Molouk, A. F. S., Okanishi, T., Muroyama, H., Matsui, T., and Eguchi, K., "A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells", ACS applied materials & interfaces, 7(51), 28701-28707, (2015) https://doi.org/10.1021/acsami.5b11122
  17. Weissenberger, T., Zapf, R., Pennemann, H., and Kolb, G., "Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas", Catalysts, 12(10), 1186, (2022)
  18. Hu, K., and Yang, D., "Studies on the Effects of NH3 in H2 and Air on the Performance of PEMFC", Energies, 14(20), 6556, (2021)
  19. Bae, B., Kim, E., Lee, S., and Lee, H., "Research Trends of Anion Exchange Membranes within Alkaline Fuel Cells", New & Renewable Energy, 11(4), 52-61, (2015) https://doi.org/10.7849/ksnre.2015.12.11.4.52
  20. Son, T. Y., Kim, T. H., Kim, H. J., and Nam, S. Y., "Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)", Applied Chemistry for Engineering, 29(5), 489-496, (2018) https://doi.org/10.14478/ACE.2018.1074
  21. Thompson, S. T., Peterson, D., Ho, D., and Papageorgopoulos, D., "Perspective-the next decade of AEMFCs: near-term targets to accelerate applied R&D", Journal of The Electrochemical Society, 167(8), 084514, (2020)
  22. Agel, E., Bouet, J., and Fauvarque, J. F., "Characterization and use of anionic membranes for alkaline fuel cells", J. Power Sources 101(2), 267-274, (2001) https://doi.org/10.1016/S0378-7753(01)00759-5
  23. ] Varcoe, J. R., Slade, R. C. T., Wright, G. L., and Chen, Y., "Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes", J. Phys. Chem. B, 110 (42), 21041-21049, (2006) https://doi.org/10.1021/jp064898b
  24. Dekel, D. R., "Review of cell performance in anion exchange membrane fuel cells", Journal of Power Sources, 375, 158-169, (2018) https://doi.org/10.1016/j.jpowsour.2017.07.117
  25. Das, G., Choi, J. H., Nguyen, P. K. T., Kim, D. J., and Yoon, Y. S., "Anion exchange membranes for fuel cell application: a review", Polymers, 14(6), 1197, (2022)
  26. Yang, Y., Peng, H., Xiong, Y., Li, Q., Lu, J., Xiao, L., ... and Abruna, H. D., "High-loading composition-tolerant Co-Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells", ACS Energy Letters, 4(6), 1251-1257, (2019) https://doi.org/10.1021/acsenergylett.9b00597
  27. Wang, J., Zhao, Y., Setzler, B. P., Rojas-Carbonell, S., Ben Yehuda, C., Amel, A., ... and Yan, Y., "Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells", Nature Energy, 4(5), 392-398, (2019) https://doi.org/10.1038/s41560-019-0372-8
  28. Hossen, M. M., Artyushkova, K., Atanassov, P., and Serov, A., "Synthesis and characterization of high performing Fe-NC catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells", Journal of Power Sources, 375, 214-221, (2018) https://doi.org/10.1016/j.jpowsour.2017.08.036
  29. Huang, G., Mandal, M., Peng, X., Yang-Neyerlin, A. C., Pivovar, B. S., Mustain, W. E., and Kohl, P. A., "Composite poly (norbornene) anion conducting membranes for achieving durability, water management and high power (3.4 W/cm2) in hydrogen/oxygen alkaline fuel cells", Journal of The Electrochemical Society, 166(10), F637-F644, (2019) https://doi.org/10.1149/2.1301910jes
  30. Zheng, Y., Irizarry Colon, L. N., Ul Hassan, N., Williams, E. R., Stefik, M., LaManna, J. M., ... and Mustain, W. E., "Effect of membrane properties on the carbonation of anion exchange membrane fuel cells", Membranes, 11(2), 102, (2021)
  31. Ziv, N., Mustain, W. E., and Dekel, D. R., "The effect of ambient carbon dioxide on anion-exchange membrane fuel cells", ChemSusChem, 11(7), 1136-1150, (2018) https://doi.org/10.1002/cssc.201702330
  32. Krewer, U., Weinzierl, C., Ziv, N., and Dekel, D. R., "Impact of carbonation processes in anion exchange membrane fuel cells", Electrochimica Acta, 263, 433-446, (2018) https://doi.org/10.1016/j.electacta.2017.12.093
  33. Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., ... and Shen, J., "A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation", Journal of Power Sources, 165(2), 739-756, (2007) https://doi.org/10.1016/j.jpowsour.2006.12.012
  34. Jeerh, G., Zhang, M., and Tao, S., "Recent progress in ammonia fuel cells and their potential applications", Journal of Materials Chemistry A, 9(2), 727-752, (2021) https://doi.org/10.1039/D0TA08810B
  35. Lan, R., and Tao, S., "Direct ammonia alkaline anion-exchange membrane fuel cells", Electrochemical and Solid-State Letters, 13(8), B83, (2010)
  36. Suzuki, S., Muroyama, H., Matsui, T., and Eguchi, K., "Fundamental studies on direct ammonia fuel cell employing anion exchange membrane", Journal of Power Sources, 208, 257-262, (2012) https://doi.org/10.1016/j.jpowsour.2012.02.043
  37. Lee, K. R., Song, D., Park, S. B., and Han, J. I., "A direct ammonium carbonate fuel cell with an anion exchange membrane", Rsc Advances, 4(11), 5638-5641, (2014) https://doi.org/10.1039/c3ra44057e
  38. Siddiqui, O., and Dincer, I., "Investigation of a new anion exchange membrane-based direct ammonia fuel cell system", Fuel Cells, 18(4), 379-388, (2018) https://doi.org/10.1002/fuce.201800052
  39. Gottesfeld, S., "The direct ammonia fuel cell and a common pattern of electrocatalytic processes", Journal of The Electrochemical Society, 165(15), J3405, (2018)
  40. Zhao, Y., Setzler, B. P., Wang, J., Nash, J., Wang, T., Xu, B., and Yan, Y., "An efficient direct ammonia fuel cell for affordable carbon-neutral transportation", Joule, 3(10), 2472-2484, (2019) https://doi.org/10.1016/j.joule.2019.07.005
  41. Achrai, B., Zhao, Y., Wang, T., Tamir, G., Abbasi, R., Setzler, B. P., ... and Gottesfeld, S., "A direct ammonia fuel cell with a KOH-free anode feed generating 180 mW cm-2 at 120℃", Journal of The Electrochemical Society, 167(13), 134518, (2020)
  42. Zhao, Y., Wang, T., Setzler, B. P., Abbasi, R., Wang, J., and Yan, Y., "A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell", ACS Energy Letters, 6(5), 1996-2002, (2021) https://doi.org/10.1021/acsenergylett.1c00370
  43. Wang, T., Zhao, Y., Setzler, B. P., Abbasi, R., Gottesfeld, S., and Yan, Y., "A high-performance 75 W direct ammonia fuel cell stack", Cell Reports Physical Science, 3(4), (2022)