Acknowledgement
본 연구는 한국기계연구원 기본사업 "차세대 암모니아 연료전지 스택 및 시스템 개발" 및 한국재료연구원 KIMS-KIMM 협력마중물 사업 "비귀금속 전극 촉매 기반 음이온 교환막 연료전지 기술 개발"의 지원으로 수행되었습니다.
References
- Intergovernmental Panel on Climate Change, "Summary for Policymakers. Special Report: Global Warming of 1.5℃", (2018)
- Dong, F., Li, Y., Gao, Y., Zhu, J., Qin, C., and Zhang, X., "Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries", Resources, Conservation and Recycling, 177, 106002, (2022)
- Chapman, A. J., Fraser, T., and Itaoka, K., "Hydrogen import pathway comparison framework incorporating cost and social preference: Case studies from Australia to Japan", International Journal of Energy Research, 41(14), 2374-2391, (2017) https://doi.org/10.1002/er.3807
- Chu, K. H., Lim, J., Mang, J. S., and Hwang, M. H., "Evaluation of strategic directions for supply and demand of green hydrogen in South Korea", International Journal of Hydrogen Energy, 47(3), 1409-1424, (2022) https://doi.org/10.1016/j.ijhydene.2021.10.107
- Soloveichik, G., "Ammonia for energy storage and delivery", The 13th annual NH3 Fuel Conference, NH3 Fuel Association, (2016)
- Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I., and Bowen, P. J., "Ammonia for power", Progress in Energy and combustion science, 69, 63-102, (2018) https://doi.org/10.1016/j.pecs.2018.07.001
- Lee, S., Jang, H., Park, C., Oh, S., Lee, S., and Kim, Y., "A Study on Ammonia Partial Oxidation over Ru Catalyst", Journal of Hydrogen and New Energy, 33(6), 786-794, (2022) https://doi.org/10.7316/KHNES.2022.33.6.786
- Yousefi Rizi, H. A., and Shin, D., "Green hydrogen production technologies from ammonia cracking", Energies, 15(21), 8246, (2022)
- Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., "Review of the decomposition of ammonia to generate hydrogen", Industrial & Engineering Chemistry Research, 60(51), 18560-18611, (2021) https://doi.org/10.1021/acs.iecr.1c00843
- Rathore, S. S., Biswas, S., Fini, D., Kulkarni, A. P., and Giddey, S., "Direct ammonia solid-oxide fuel cells: A review of progress and prospects", International Journal of Hydrogen Energy, 46(71), 35365-35384, (2021) https://doi.org/10.1016/j.ijhydene.2021.08.092
- Berwal, P., Kumar, S., and Khandelwal, B., "A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion", Journal of the Energy Institute, 99, 273-298, (2021) https://doi.org/10.1016/j.joei.2021.10.001
- Hansson, J., Brynolf, S., Fridell, E., and Lehtveer, M., "The potential role of ammonia as marine fuel -based on energy systems modeling and multicriteria decision analysis", Sustainability, 12(8), 3265, (2020)
- Han, D., Liu, Y., and Huang, Z., "The Use of Ammonia as a Fuel for Combustion Engines", Engines and Fuels for Future Transport, 233-256, (2022)
- Wang, B., Ni, M., and Jiao, K., "Green ammonia as a fuel", Science bulletin, 67(15), 1530-1534, (2022) https://doi.org/10.1016/j.scib.2022.06.023
- Kishimoto, M., Muroyama, H., Suzuki, S., Saito, M., Koide, T., Takahashi, Y., ... and Eguchi, K., "Development of 1 kW-class Ammonia-fueled Solid Oxide Fuel Cell Stack", Fuel Cells, 20(1), 80-88, (2020) https://doi.org/10.1002/fuce.201900131
- Yang, J., Molouk, A. F. S., Okanishi, T., Muroyama, H., Matsui, T., and Eguchi, K., "A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells", ACS applied materials & interfaces, 7(51), 28701-28707, (2015) https://doi.org/10.1021/acsami.5b11122
- Weissenberger, T., Zapf, R., Pennemann, H., and Kolb, G., "Effect of the Active Metal on the NOx Formation during Catalytic Combustion of Ammonia SOFC Off-Gas", Catalysts, 12(10), 1186, (2022)
- Hu, K., and Yang, D., "Studies on the Effects of NH3 in H2 and Air on the Performance of PEMFC", Energies, 14(20), 6556, (2021)
- Bae, B., Kim, E., Lee, S., and Lee, H., "Research Trends of Anion Exchange Membranes within Alkaline Fuel Cells", New & Renewable Energy, 11(4), 52-61, (2015) https://doi.org/10.7849/ksnre.2015.12.11.4.52
- Son, T. Y., Kim, T. H., Kim, H. J., and Nam, S. Y., "Problems and Solutions of Anion Exchange Membranes for Anion Exchange Membrane Fuel Cell (AEMFC)", Applied Chemistry for Engineering, 29(5), 489-496, (2018) https://doi.org/10.14478/ACE.2018.1074
- Thompson, S. T., Peterson, D., Ho, D., and Papageorgopoulos, D., "Perspective-the next decade of AEMFCs: near-term targets to accelerate applied R&D", Journal of The Electrochemical Society, 167(8), 084514, (2020)
- Agel, E., Bouet, J., and Fauvarque, J. F., "Characterization and use of anionic membranes for alkaline fuel cells", J. Power Sources 101(2), 267-274, (2001) https://doi.org/10.1016/S0378-7753(01)00759-5
- ] Varcoe, J. R., Slade, R. C. T., Wright, G. L., and Chen, Y., "Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes", J. Phys. Chem. B, 110 (42), 21041-21049, (2006) https://doi.org/10.1021/jp064898b
- Dekel, D. R., "Review of cell performance in anion exchange membrane fuel cells", Journal of Power Sources, 375, 158-169, (2018) https://doi.org/10.1016/j.jpowsour.2017.07.117
- Das, G., Choi, J. H., Nguyen, P. K. T., Kim, D. J., and Yoon, Y. S., "Anion exchange membranes for fuel cell application: a review", Polymers, 14(6), 1197, (2022)
- Yang, Y., Peng, H., Xiong, Y., Li, Q., Lu, J., Xiao, L., ... and Abruna, H. D., "High-loading composition-tolerant Co-Mn spinel oxides with performance beyond 1 W/cm2 in alkaline polymer electrolyte fuel cells", ACS Energy Letters, 4(6), 1251-1257, (2019) https://doi.org/10.1021/acsenergylett.9b00597
- Wang, J., Zhao, Y., Setzler, B. P., Rojas-Carbonell, S., Ben Yehuda, C., Amel, A., ... and Yan, Y., "Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells", Nature Energy, 4(5), 392-398, (2019) https://doi.org/10.1038/s41560-019-0372-8
- Hossen, M. M., Artyushkova, K., Atanassov, P., and Serov, A., "Synthesis and characterization of high performing Fe-NC catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells", Journal of Power Sources, 375, 214-221, (2018) https://doi.org/10.1016/j.jpowsour.2017.08.036
- Huang, G., Mandal, M., Peng, X., Yang-Neyerlin, A. C., Pivovar, B. S., Mustain, W. E., and Kohl, P. A., "Composite poly (norbornene) anion conducting membranes for achieving durability, water management and high power (3.4 W/cm2) in hydrogen/oxygen alkaline fuel cells", Journal of The Electrochemical Society, 166(10), F637-F644, (2019) https://doi.org/10.1149/2.1301910jes
- Zheng, Y., Irizarry Colon, L. N., Ul Hassan, N., Williams, E. R., Stefik, M., LaManna, J. M., ... and Mustain, W. E., "Effect of membrane properties on the carbonation of anion exchange membrane fuel cells", Membranes, 11(2), 102, (2021)
- Ziv, N., Mustain, W. E., and Dekel, D. R., "The effect of ambient carbon dioxide on anion-exchange membrane fuel cells", ChemSusChem, 11(7), 1136-1150, (2018) https://doi.org/10.1002/cssc.201702330
- Krewer, U., Weinzierl, C., Ziv, N., and Dekel, D. R., "Impact of carbonation processes in anion exchange membrane fuel cells", Electrochimica Acta, 263, 433-446, (2018) https://doi.org/10.1016/j.electacta.2017.12.093
- Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., ... and Shen, J., "A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation", Journal of Power Sources, 165(2), 739-756, (2007) https://doi.org/10.1016/j.jpowsour.2006.12.012
- Jeerh, G., Zhang, M., and Tao, S., "Recent progress in ammonia fuel cells and their potential applications", Journal of Materials Chemistry A, 9(2), 727-752, (2021) https://doi.org/10.1039/D0TA08810B
- Lan, R., and Tao, S., "Direct ammonia alkaline anion-exchange membrane fuel cells", Electrochemical and Solid-State Letters, 13(8), B83, (2010)
- Suzuki, S., Muroyama, H., Matsui, T., and Eguchi, K., "Fundamental studies on direct ammonia fuel cell employing anion exchange membrane", Journal of Power Sources, 208, 257-262, (2012) https://doi.org/10.1016/j.jpowsour.2012.02.043
- Lee, K. R., Song, D., Park, S. B., and Han, J. I., "A direct ammonium carbonate fuel cell with an anion exchange membrane", Rsc Advances, 4(11), 5638-5641, (2014) https://doi.org/10.1039/c3ra44057e
- Siddiqui, O., and Dincer, I., "Investigation of a new anion exchange membrane-based direct ammonia fuel cell system", Fuel Cells, 18(4), 379-388, (2018) https://doi.org/10.1002/fuce.201800052
- Gottesfeld, S., "The direct ammonia fuel cell and a common pattern of electrocatalytic processes", Journal of The Electrochemical Society, 165(15), J3405, (2018)
- Zhao, Y., Setzler, B. P., Wang, J., Nash, J., Wang, T., Xu, B., and Yan, Y., "An efficient direct ammonia fuel cell for affordable carbon-neutral transportation", Joule, 3(10), 2472-2484, (2019) https://doi.org/10.1016/j.joule.2019.07.005
- Achrai, B., Zhao, Y., Wang, T., Tamir, G., Abbasi, R., Setzler, B. P., ... and Gottesfeld, S., "A direct ammonia fuel cell with a KOH-free anode feed generating 180 mW cm-2 at 120℃", Journal of The Electrochemical Society, 167(13), 134518, (2020)
- Zhao, Y., Wang, T., Setzler, B. P., Abbasi, R., Wang, J., and Yan, Y., "A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell", ACS Energy Letters, 6(5), 1996-2002, (2021) https://doi.org/10.1021/acsenergylett.1c00370
- Wang, T., Zhao, Y., Setzler, B. P., Abbasi, R., Gottesfeld, S., and Yan, Y., "A high-performance 75 W direct ammonia fuel cell stack", Cell Reports Physical Science, 3(4), (2022)