• Title/Summary/Keyword: Hydrogen delayed fracture

Search Result 17, Processing Time 0.03 seconds

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

Hydrogen Delayed Fracture of TRIP Steel by Small Punch Test (소형펀치시험에 의한 TRIP강의 수소 지연파괴 거동)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • The strain-induced phase transformation from austenite to martensite is responsible for the high strength and ductility of TRIP steels. However high strength steels are susceptible to hydrogen embrittlement. This study aimed to evaluate the effects of hydrogen on the behavior of hydrogen delayed fracture in TRIP steel with hydrogen charging conditions. The electrochemical hydrogen charging was conducted at each specimen with varying current density and charging time. The relationship between hydrogen concentration and mechanical properties of TRIP steel was established by SP test and SEM fractography. The maximum loads and displacements of the TRIP steel in SP test decreased with increasing hydrogen charging time. The results of SEM fractography investigation revealed typical brittle mode of failure. Thus it was concluded that hydrogen delayed fracture in TRIP steel result from the diffusion of hydrogen through the ${\alpha}$' phase.

A study of hydrogen embrittlement behavior in E.B welded 250,300 grade 18% Ni maraging steel (전자비임 용접한 250 및 300 Grade 18% Ni Maraging 강의 수소취화 거동에 관한 연구)

  • 윤한상;정병호
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.53-59
    • /
    • 1987
  • The effect of applied stress, current density and heat-treatment after welding on the time to fracture, fracture behavior was investigated by the method of constant load tensile testing under catholic charging with hydrogen in E.B. welded 250,300 Grade 18% Ni Maraging steel sheet. The main results obtained are as follows: 1. All specimen showed the characteristic delayed failure and the time to fracture showed decreasing tendency with the increase in current density and applied stress. 2. Hydrogen embitterment susceptibility of notched specimen after solution-treatment and aging after welding was more increased than that of aged smooth specimen and as welded specimen. 3. Fracture surface showed a typical intergranular fracture on the border, a dimple pattern in the center of specimen and some quasi-cleavage fracture between the intergranular and the dimple.

  • PDF

Effects of Carbides on Hydrogen-induced Delayed Fracture for the Energy Saving Wire (ESW) (선조철강의 탄화물에 따른 수소지연파괴 거동 분석)

  • Lee, J.B.;Kang, N.H.;Park, J.T.;Ahn, S.T.;Park, Y.D.;Cho, K.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.139-141
    • /
    • 2009
  • This study analyzed the effect of the microstructure and alloying element on hydrogen-induced delayed fracture properties for the Energy Saving Wire (ESW) developed recently. Specimens were produced with a diameter 6.5mm post to the deformation (0, 10, 20 and 30%), followed by injecting the hydrogen. The experimental results by using GAS chromatography showed that the more hydrogen was emitted for high-carbon steel (0.45%C steel and 0.35%C steel) than low-carbon steel(0.2%C-Cr steel and 0.2%C-Cr-Mo steel). And, 0.45%C steel, 0.35%C steel and 0.2%C-Cr-Mo steel exhibited the crack for 30% deformed specimen. The hydrogen emitted was analyzed with the amount, the spheroidization, and the size of the carbides.

  • PDF

Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal (600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동)

  • Kang, Hee Jae;Lee, Tae Woo;Yoon, Byung Hyun;Park, Seo Jeong;Chang, Woong Seong;Cho, Kyung Mox;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

Effects of the Strain Induced Martensite Transformation on the Delayed Fracture for Al-added TWIP Steel (Al 첨가 TWIP강에서의 지연파괴에 대한 변형유기 마르텐사이트 변태의 영향)

  • Kim, Youngwoo;Kang, Namhyun;Park, Youngdo;Choi, Ildong;Kim, Gyosung;Kim, Sungkyu;Cho, Kyungmox
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.780-787
    • /
    • 2008
  • For the advanced high strength steels (AHSS), high-manganese TWIP (twinning induced plasticity) steels exhibit high tensile strength (800-1000 MPa) and high elongation (50-60%). However, the TWIP steels need to be understood of delayed fracture following the cup drawing test. Among the factors to cause delayed fracture, i.e, martensite transformation, hydrogen embrittlement and residual stress, the effects of martensite transformation (${\gamma}{\rightarrow}{\varepsilon}$ or ${\gamma}{\rightarrow}{\alpha}^{\prime}$) were investigated on the delayed fracture phenomenon. Microstructural phase analysis was conducted for cold rolled (20, 60, 80% reduction ratio) steels and tensile deformed (20, 40, 60% strain) steels. For the Al-added TWIP steels, no martensite phase was found in the cold rolled and tensile deformed specimen. But, the TWIP steels with no Al addition indicated the martensite transformation. The cup drawing specimens showed the martensite transformation irrespective of the Al-addition to the TWIP steel. However, the TWIP steel with no Al exhibited the larger amount of martensite than the case of the TWIP steel with Al addition. For the reason, it was possible to conclude that the Al addition suppressed the martensite transformation in TWIP steels, therefore preventing the delayed fracture effectively. However, it was interesting to note that the mechanism of delayed fracture should be incorporated with hydrogen embrittlement and/or residual stress as well as the martensite transformation.

Fracture Toughness Embrittlement by Hydride in Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 수화물에 의한 파괴인성 취화에 관한 연구)

  • Oh, Dong-Joan;Ahn, Sang-Bok;Park, Soon-Sam;An, Chang-Yun;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.93-98
    • /
    • 2000
  • Unpredictable failures can occur due to the DHC (delayed hydride cracking) or the degradation of fracture toughness by hydride embrittlement in CANDU pressure tube which can result from the absorption of hydrogen or deuterium in the high temperature coolant. To investigate the hydride embrittlement of CANDU Zr-2.5Nb pressure tube, the transverse tensile test and the fracture toughness test were performed from room temperature to $300^{\circ}C$ using three different specimens which have an AR (As Received), 100, and 200 ppm hydrogen. As the amount of absorbed hydrogen was increased, the transverse yield strength and the ultimate tensile strength were also increased. In addition, as the test temperature became higher they were decreased linearly. While, at room temperature, the hydrogenbsorbed specimens represented the embrittlement which resulted in sudden decreasing of fracture toughness, the fracture characteristics became ductile such as AR specimen at high temperatures. Through the observation of fracture surface using SEM, it was found that the stress state of mixed mode could be related to the fissure which was believed to decrease the global fracture toughness.

  • PDF

The Finite Element Analysis on the Characteristics of the Hydrogen Diffusion for the Cr-Mo Steels (Cr-Mo강의 수소확산 특성에 관한 유한요소해석)

  • Lee, Hwi-Won;Ha, Min-Su
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • The size of hydrogen molecule is not so small as to invade into the lattice of material, and therefore, hydrogen invades into the material as atom. Hydrogen movement is done by diffusion or dislocation movement in the near crack tip or plastic deformation. Hydrogen appeared to have many effects on the mechanical properties of the Cr-Mo steel alloys. The materials for this study are 1.25Cr-0.5Mo and 2.25Cr-1Mo steels used at high temperature and pressure. The hydrogen amount obtained by theoretical calculation was almost same with the result solved by finite element analysis. The distribution of hydrogen concentration and average concentration was calculated for a flat specimen. Also, finite element analysis was employed to simulate the redistribution of hydrogen due to stress gradient. The calculation of hydrogen concentration diffused into the material by finite element method will provide the basis for the prediction of delayed fracture of notched specimen. The distribution of hydrogen concentration invaded into the smooth and notched specimen was obtained by finite element analysis. The hydrogen amount is much in smooth specimen and tends to concentrate in the vicinity of surface. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Hydrogen Effect Assessment of Fuel Supply Systems for Hydrogen Blended Natural Gas Vehicle (수소-천연가스 혼합연료 차량 연료 공급시스템 수소영향 평가)

  • Kang, SeungKyu;Kim, SangRyul
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • This study evaluated hydrogen effect of metal and non-metallic materials used in the hydrogen blended natural gas vehicle. Hydrogen penetrated concentration of 34Cr-Mo steel(850MPa tensile strength) for winter driving conditions was measured 0.0018ppm and summer driving conditions was 5.3ppm. The critical hydrogen concentration of high strength metal used in this study was measured 1.03ppm by CLT. Therefore, 34CrMo steel cas cause problems in the 30% HCNG(25MPa) environment. In case of the test for non-metallic materials, all materials met the criteria of the gas resistance test, but Fluorocarbon Rubber material had a significant change in the volume. So if it is used, extra care is needed.