• Title/Summary/Keyword: Hydrogen compression

Search Result 138, Processing Time 0.028 seconds

Effect of Hydrogen Enriched LPG Fuelled Engine with Converted from a Diesel Engine

  • Choi, Gyeung-Ho;Lee, Jae-Cheon;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.139-145
    • /
    • 2006
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.8 to 1.3, and the ignition timing was controlled to be at MBT (minimum spark advance for best torque)

Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Oil Characteristics (수소용 다이어프램 압축기의 작동유 특성에 따른 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.787-790
    • /
    • 2009
  • There are several types of compressors which are appropriate for hydrogen gas station. Metal diaphragm type of hydrogen compressor is the one of them, a use in which satisfies the requirements of maintaining gas purity and producing high pressure over 700 bar. The objective of this study is to investigate an characteristics of compression as bulk modulus of oil varies. Three cases of bulk modulus ranging from $2{\times}10^9$, $4.52{\times}10^9$ and $7{\times}10^9$ were studied through FSI (Fluid Structure Interaction) analysis. Gas pressure, oil pressure and deflection degree of diaphragm were analysed during a certain period of compression process. Highest pressure and deflection were found in the condition of high bulk modulus of $7{\times}10^9$.

  • PDF

Construction of Response Surface Model for Compression Ignition Engine Using Stepwise Method (Stepwise 방식을 이용한 압축 착화 디젤 엔진의 반응 표면 모델 구축)

  • WAHONO, BAMBANG;PUTRASARI, YANUANDRI;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.98-105
    • /
    • 2017
  • In recent years, compression ignition engine has been equipped with some control devices such as common rail injection system and turbocharger. In order to control the large number of input parameter appropriately in consideration of $NO_x$, HC and engine power as the engine output objectives. The model construction which reproduces the characteristic value of $NO_x$, HC and engine power from input parameter is needed. In this research, the stepwise method was applied to construct the compression ignition engine model. By using the preliminary experimental data of single cylinder compression ignition engine, the prediction model of $NO_x$, HC and engine power on single injection compression ignition engine was built and compared with the main experimental data.

A Composition and Basis Experiment of Single Cylinder Low Speed Diesel Engine for Atkinson Cycle Materialization (앳킨슨사이클 실현을 위한 단기통 저속 디젤기관의 구성과 기초 실험)

  • Jang, Jtaeik
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.461-466
    • /
    • 2013
  • In this research, the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engine to the atkinson cycle, and general cycle features were analyzed after comparing these two cycles. That an experimental single cylinder and a long stroke diesel-atkinson engine, of which S/B ratio was more than 3, were manufactured. After evaluating the engine through basic experiments, a diesel engine was converted into the atkinson cycle by constituent VCR (variable compression ratio) device and VVT (variable valve timing) system. The experimental method was to observe compression work reduction effects due to low compression effects from delayed intake valve closing of the early stage atkinson engine. The result, the possibility of increasing compression ratio about each engine load was confirmation by constructing compensate expansion-compression ratio in accordance with the delayed intake valve close.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

CFD and Experimental Study of Gas Flow Inside the Steel Pipe Fitted in Reciprocating Hydrogen Compression System (왕복동식 압축시스템에 연결된 파이프 내부의 유동특성에 관한 CFD와 실험)

  • Rahman, Mohammad-Shiddiqur;Lee, Gyeong-Hwan;Lee, Kwang-Sung;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1513-1520
    • /
    • 2009
  • Renewability and pollutant free energy source makes hydrogen energy popular rapidly. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of a steel pipe used in snubber system. The amplitude of pressure reduction were varied from $0.054{\sim}0.321\;kPa$ for 10 hz to 60 hz motor speed. Compressor operation by motor with 10 to 60 hz were resulted in reduction of pressure pulsation from 16.415% to 35.151%. Pressure losses were varied from $0.001%{\sim}0.759%$, and pressure drop per centimeter of the steel pipe were varied from $0.0160{\sim}16.03\;Pa$.

  • PDF

A Experimental Study on a Pressure Variation in the Cavity of Hydrogen Diaphragm Compressor (다이아프램식 수소압축기의 캐비티 내 압력특성 변화에 관한 실험적 연구)

  • Shin, Young-Il;Park, Hyun-Woo;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.769-772
    • /
    • 2009
  • Diaphragm compressors are used for a hydrogen compression because it can achieve high gas pressure with high purity. But diaphragm's lifetime may depend on the shape of the cavity and deflection from fluctuation the pressure change, which is necessary to monitored. In this study, the gas and hydraulic oil pressure in the cavity were measured as piston speed varies for diaphragm compressor. The results show pressure change quantities were reduced and maximum pressure points are delayed as the piston moves faster. And the hydraulic pressure were elevated as gas pressure elevated. And the compression period was more faster than expansion period.

  • PDF

Hydrogen Compressor Cycle Analysis for the Operating Pressure of 50 MPa and High Charging Capacity (50 MPa급 대용량 수소압축기 사이클 해석)

  • Song, Byung-Hee;Myoung, No-Seuk;Jang, Seon-Jun;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.66-73
    • /
    • 2020
  • In the hydrogen compression cycle, which is currently being developed, hydrogen is compressed to a very high pressure using a compressor, and then stored and used in a high-pressure vessel. This shows that an increase in the temperature of hydrogen in the vessel due to a pressure rise during the filling process and the pressure fatigue due to the repeated cycle may cause problems in the reliability of the vessel. In this paper, for the entire processes in a 50 MPa hydrogen compression system, theoretical and numerical methods were conducted to analyze the following: the temperature increase of hydrogen in the vessel and the time required to reach thermal equilibrium with the surroundings, the change in temperature of hydrogen passing through the pressure reducing valve, and the required capacity of the heat exchanger for cooling the vessel. The results will be useful for the design and construction of hydrogen compression systems, such as hydrogen charging stations.

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.

A Study on the Characteristics of n-Butane for a Homogeneous Charge Compression Ignition Engine (균질혼합압축점화기관에서 n-부탄 연료의 특성에 관한 연구)

  • HAN, SUNG BIN;PARK, JUN YOUNG;CHUNG, YON JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.604-611
    • /
    • 2016
  • This paper describes the characteristics of n-Butane fuel for the homogeneous charge compression ignition (HCCI) engine for a new concept. HCCI engines are being considered as a future alternative for diesel and gasoline engines. From the experimental observations, the effect of n-Butane fuel in HCCI engine on CO, HC and NOx are analysed. The objective of this paper is to clear the effects of equivalence ratio and inlet temperature with n-Butane on the HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine This work has been run with n-butane fuel at a constant speed.