• 제목/요약/키워드: Hydrogen behavior

검색결과 699건 처리시간 0.022초

수소 난류확산화염에서의 부상 메커니즘에 대한 연구 (Liftoff mechanisms in hydrogen turbulent non-premixed jet flames)

  • 오정석;김문기;최영일;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-12
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone. PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs where the local flow velocity is valanced with the turbulent flame propagation velocity.

  • PDF

HYDROGEN BEHAVIOR IN THE IRWST OF APR1400 FOLLOWING A STATION BLACKOUT

  • Kim, Han-Chul;Suh, Nam-Duk;Park, Jae-Hong
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.195-200
    • /
    • 2006
  • In order to confirm the integrity of IRWST following a severe accident, the hydrogen behavior inside and around the IRWST has been investigated for an SBO accident. A detailed containment model, including 18 control volumes for IRWST, has been developed. Analysis results show that the peak hydrogen concentration is about 57% during the core melting period. The combustion regime shows that flame acceleration and DDT are possible in the IRWST. The flame acceleration criterion is met when the peak hydrogen concentration occurs; the 7 -DDT criterion is also met during some periods. These results show certain measures may be required to assure IRWST integrity against an SBO accident.

Hydrogen Absorption Behavior of Zr-2.5Nb Pressure Tubes in Wolsong Unit 1

  • Choo, Kee-Nam;Kwon, Sang-Chul;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.318-327
    • /
    • 1998
  • The deuterium uptake behavior of Zr-2.5Nb pressure tubes in Wolsong Unit 1 was analyzed in terms of longitudinal location, operation time, and coolant temperature. The results were compared with those obtained from Canadian CANDU reactors. The amount of deuterium uptake was higher at the outlet part than at the inlet part and was also higher when subjected to a longer operation time and a higher coolant temperature. The hydrogen uptake of Zr-2.5Nb in a hydrogen gas atmosphere was dependent on the microstructure of the alloy. The aged Zr-2.5Nb consisting of $\alpha$-Zr and $\beta$-Nb phases showed higher hydrogen uptake than that consisting of $\alpha$-Zr and $\beta$-Zr phases. The hydrogen in the alloy decreased the rate of oxidation. This could be explained in terms of the cathodic controlled reaction of Zr-2.5Nb oxidation.

  • PDF

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen;Song, Kaili;Li, Guijuan;Yang, Lei
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.323-329
    • /
    • 2020
  • The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.

The Effect of Alloy Microstructure on the Behavior of Pd and Pd-based Alloy towards H2

  • Lee, Hyun Kyu;Noh, Hak
    • 한국수소및신에너지학회논문집
    • /
    • 제11권3호
    • /
    • pp.97-105
    • /
    • 2000
  • The influence of different microstructures and compositional variations on hydrogen absorption by pure Pd, and $Pd_{0.9}Rh_{0.1}$ alloy has been examined from changes in the hydrogen isotherms. The dilute phase solubilities and the plateau pressures are affected by differences in microstructures and compositional variations but the hydrogen capacities at relatively high hydrogen pressures are not affected except for the alloy form which has some phase separation.

  • PDF

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management

원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향 (Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor)

  • 임연수;김동진;김성우;황성식;김홍표;조성환
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성 (Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures)

  • 한주연;이규휘;강현지;오승탁
    • 한국분말재료학회지
    • /
    • 제26권5호
    • /
    • pp.410-414
    • /
    • 2019
  • The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.

수소주입시킨 다상조직강의 Subsurface Zone 내 취성화 거동 (A Behavior of Embrittlement at the Subsurface Zones of Multiphase Steels Charged with Hydrogen)

  • 강계명;박재우;최종운
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.48-53
    • /
    • 2013
  • In the present work, it was investigated a behavior of hydrogen embrittlement at the subsurface zones of 590 DP steels by using the micro-Vickers hardness test. The micro-Vickers hardnessess of DP steels were measured to evaluate the degree of embrittlement as the effective hardening depths of subsurface zones with hydrogen charging conditions. The results showed that the distributions of micro-Vickers hardness in width varied from maximum hardness 239.5 Hv to minimum hardness 174 Hv, while the depth of effective hardening layer at the subsurface zones of DP steels was from $320{\mu}m$ to $460{\mu}m$ with hydrogen charging conditions, respectively. It was proposed that the distribution of microhardness be used as the evaluation index of the degree of embrittlement. But the variations of martensite volume fractions were not affected along depth of hardening at the same changing time, hydrogen charging times were appeared as an effective factor of the degree of embrittlement. Therefore, the micro-Vickers hardness test is an attractive tool for evaluation of hydrogen embrittlement at the subsurface zones of these DP steels.

자동차 박강판용 고강도 DP강 표면층의 수소거동 (The Hydrogen Behavior of Surface Layers of High Strength DP Thin Sheet Steels for Automobile)

  • 박재우;강계명
    • 한국가스학회지
    • /
    • 제14권6호
    • /
    • pp.38-43
    • /
    • 2010
  • 자원 부족과 환경규제의 강화에 따라 자동차 강판재의 고강도화와 박강판화가 주요 이슈로 대두되고 있다. 그러나 고강도 강판재 사용에 있어 수소취성은 기계적 성질 저하의 문제가 되고 있다. 본 연구에서는 개발중인 590MPa급 DP강을 대상으로 조성 및 조직특성에 따른 표면층에서의 수소의 거동에 대해 연구하였다. 수소주입은 음극전기분해법을 이용하여 강제 주입시켰고, 수소주입조건에 따른 수소주입량과 표면층 조직관찰 및 미소경도시험 결과의 관계로 부터 표면층의 수소거동을 평가하였다.