DOI QR코드

DOI QR Code

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures

볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성

  • Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Gyuhwi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한주연 (서울과학기술대학교 신소재공학과) ;
  • 이규휘 (서울과학기술대학교 신소재공학과) ;
  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2019.10.10
  • Accepted : 2019.10.21
  • Published : 2019.10.28

Abstract

The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.

Keywords

References

  1. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas: Phys. Rev. Lett., 68 (1992) 3745. https://doi.org/10.1103/PhysRevLett.68.3745
  2. W. Wang, F. Zhu, W. Lai, J. Wang, G. Yang, J. Zhu and Z. Zhang: J. Phys. D: Appl. Phys., 32 (1999) 1990. https://doi.org/10.1088/0022-3727/32/16/306
  3. M. D. Koninck, S.-C. Poirier and B. Marsan: J. Electrochem. Soc., 153 (2006) A2103. https://doi.org/10.1149/1.2338631
  4. Y. S. Park, C. Jung, C. Kim, T. Koo, C. Seok, I. Kwon and Y. Kim: Korean J. Mater. Res., 29 (2019) 92. https://doi.org/10.3740/MRSK.2019.29.2.92
  5. T. Nishizawa and K. Ishida: Bull. Alloy Phase Diagrams, 5 (1984) 161. https://doi.org/10.1007/BF02868953
  6. C. Gente, M. Oehring and R. Borman: Phys. Rev. B, 48 (1993) 13244. https://doi.org/10.1103/PhysRevB.48.13244
  7. J. Wecker, R. von Helmolt and L. Schultz: Appl. Phys. Lett., 62 (1993) 1985. https://doi.org/10.1063/1.109511
  8. D.-G. Kim, S.-T. Oh, H. Jeon, C.-H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0
  9. H. Kang and S.-T. Oh: J. Korean Powder Metall. Inst., 25 (2018) 322. https://doi.org/10.4150/KPMI.2018.25.4.322
  10. S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Cataly., 37 (1975) 424. https://doi.org/10.1016/0021-9517(75)90179-7
  11. J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel and P. L. Lee: J. Am. Chem. Soc., 125 (2003) 10684. https://doi.org/10.1021/ja0301673
  12. H.-Y. Lin and Y.-W. Chen: Mater. Chem. Phys., 85 (2004) 171. https://doi.org/10.1016/j.matchemphys.2003.12.028
  13. D.-G. Kim, K.H. Min, S.-Y. Chang, S.-T. Oh, C.-H. Lee and Y. D. Kim: Mater. Sci. Eng. A, 399 (2005) 326. https://doi.org/10.1016/j.msea.2005.04.010
  14. H. E. Kissinger: Anal. Chem., 29 (1957) 1702. https://doi.org/10.1021/ac60131a045
  15. P. Malet and A. Caballero: J. Chem. Soc., Faraday Trans. 1, 84 (1988) 2369. https://doi.org/10.1039/f19888402369