Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.5.410

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures  

Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Gyuhwi (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.26, no.5, 2019 , pp. 410-414 More about this Journal
Abstract
The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.
Keywords
Cu-Co powder; $CuO-SCo_3O_4$ powder mixture; Hydrogen reduction behavior; Microstructure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten and G. Thomas: Phys. Rev. Lett., 68 (1992) 3745.   DOI
2 W. Wang, F. Zhu, W. Lai, J. Wang, G. Yang, J. Zhu and Z. Zhang: J. Phys. D: Appl. Phys., 32 (1999) 1990.   DOI
3 M. D. Koninck, S.-C. Poirier and B. Marsan: J. Electrochem. Soc., 153 (2006) A2103.   DOI
4 Y. S. Park, C. Jung, C. Kim, T. Koo, C. Seok, I. Kwon and Y. Kim: Korean J. Mater. Res., 29 (2019) 92.   DOI
5 T. Nishizawa and K. Ishida: Bull. Alloy Phase Diagrams, 5 (1984) 161.   DOI
6 C. Gente, M. Oehring and R. Borman: Phys. Rev. B, 48 (1993) 13244.   DOI
7 J. Wecker, R. von Helmolt and L. Schultz: Appl. Phys. Lett., 62 (1993) 1985.   DOI
8 D.-G. Kim, S.-T. Oh, H. Jeon, C.-H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239.   DOI
9 H. Kang and S.-T. Oh: J. Korean Powder Metall. Inst., 25 (2018) 322.   DOI
10 S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Cataly., 37 (1975) 424.   DOI
11 J. Y. Kim, J. A. Rodriguez, J. C. Hanson, A. I. Frenkel and P. L. Lee: J. Am. Chem. Soc., 125 (2003) 10684.   DOI
12 H.-Y. Lin and Y.-W. Chen: Mater. Chem. Phys., 85 (2004) 171.   DOI
13 D.-G. Kim, K.H. Min, S.-Y. Chang, S.-T. Oh, C.-H. Lee and Y. D. Kim: Mater. Sci. Eng. A, 399 (2005) 326.   DOI
14 H. E. Kissinger: Anal. Chem., 29 (1957) 1702.   DOI
15 P. Malet and A. Caballero: J. Chem. Soc., Faraday Trans. 1, 84 (1988) 2369.   DOI